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Abstract

This paper considers testing against a change in the order of integration of a time series,
either from I(0) to I(1) or from I(1) to I(0), at some known or unknown point in the sample.
The null hypothesis is that the series is stochastically stationary around a deterministic trend
function. For the case of a known change-point the locally best invariant (LBI) tests against
the above changes in the order of integration are derived under the assumption of Gaussianity.
When the change-point is not known we construct our tests taking functions of the LBI statistics
over all possible break-dates. Sub-sample implementations of existing stationarity tests are also
considered. We demonstrate by a series of simulation experiments that, for a given direction
of change, the LBI-based approach can deliver considerably more powerful tests than both the
sub-sample stationarity tests and the ratio-based tests of Kim et al. (J. Econom. 109 (2002)
389) and Busetti and Taylor (Tests of stationarity against a change in persistence, University of
Birmingham, Department of Economics, Discussion Paper 01-13, 2001). Moreover, the power
losses from an unknown breakpoint do not appear to be large. We also :nd that standard
stationarity tests have good power against both changes from I(0) to I(1) and vice versa, while
the ratio-based tests are consistent only against a known direction of change. A further test
constructed in terms of the LBI-based statistics for the two possible directions of change is
shown to perform generally better than the standard stationarity tests when the direction of change
under the alternative is not known. Finally, we apply the tests discussed in the paper to the US
in;ation rate and :nd evidence for a change in persistence from I(1) to I(0) behaviour although,
signi:cantly, the timing of this change varies according to whether or not a simultaneous change
in the level of the series is allowed.
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1. Introduction

In a recent paper, Kim (2000) develops residual-based ratio tests against changes in
persistence in a time series, focusing on the case of a shift from stochastic stationarity,
I(0), to diDerence stationarity, I(1), at some point in the sample. Kim (2000) also
discusses the possibility of I(1) to I(0) shifts but does not provide tests against such
alternatives. Like the stationarity tests of, inter alia, Nyblom and MFakelFainen (1983)
[NM] and Kwiatkowski et al. (1992) [KPSS], Kim (2000) tests the null that the series
is I(0) throughout its history, but diDers from the latter which are designed as tests
against a constant I(1) alternative. Complementary tests have been proposed in Banerjee
et al. (1992) [BLS] and Leybourne et al. (2000) [LKSN] who use Dickey-Fuller-type
statistics to test the constant I(1) null against the alternative of either a change from
I(0) to I(1) or from I(1) to I(0).
Changes of this kind in macroeconomic variables are well documented; see the

literature reviews in Kim (2000) and LKSN. The range of series for which such phe-
nomena have been observed includes in;ation rates, real output and short-term interest
rates. The development of tests against such behaviour is therefore of considerable
practical relevance. Although the ratio-based tests of Kim (2000) are inconsistent, sim-
ple modi:cations proposed independently in Busetti and Taylor (2001) [BT] and Kim
et al. (2002), can provide consistent tests and breakpoint estimation under I(0) to
I(1) changes. In this paper we propose new ratio-based tests and breakpoint estimators
which are consistent under I(1) to I(0) changes, and demonstrate that the ratio-based
tests which are consistent against changes from I(1) to I(0) are not consistent against
changes from I(0) to I(1), and vice versa, with neither consistent against constant I(1)
processes. Consequently, acceptance of the null by the ratio-based tests cannot be taken
to imply that the process is stationarity, even in large samples.
Assuming a known breakpoint and Gaussian innovations, we derive locally best

invariant (LBI) tests of the constant I(0) null against: (i) a shift from I(0) to I(1),
and (ii) from I(1) to I(0). These tests are subsequently modi:ed to allow for weakly
dependent innovations and for an unknown breakpoint and are shown to contain the
standard NM/KPSS tests as special cases. The consistency of the LBI-based tests is
demonstrated and simulation evidence shows them to be considerably more powerful
than the ratio-based tests. We show that LBI-based tests against I(0) to I(1) changes
are also consistent against I(1) to I(0) changes, and vice versa, and against constant
I(1) processes. They therefore constitute useful Portmanteau statistics against any I(1)
behaviour in the process’s history.
In practice the direction of the change may be unknown. In an attempt to max-

imise power for this situation, we also propose tests based on the pairwise maxima of
the LBI-based and ratio-based statistics for I(0) to I(1) changes and vice versa. The
NM/KPSS test is also found to display very good power properties when the change
occurs near the beginning (end) of the sample when the switch is in the I(0)-I(1)
(I(1)-I(0) respectively) direction, but appears to be dominated by our pairwise maxi-
mum LBI-based tests otherwise.
The plan of the paper is as follows. In Section 2 we discuss tests for the constant I(0)

null against the alternative of an I(0) to I(1) change. We :rst review the ratio-based
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class of tests. We then develop the exact LBI tests under a known breakpoint. Mod-
i:cations for an unknown breakpoint are also proposed. We also discuss sub-sample
implementations of the NM/KPSS tests. In Section 3 we repeat the analysis of Section
2 for alternatives of a change from I(1) to I(0), while in Section 4 we discuss cases
where the direction of change is not assumed known to the investigator. In Section 5
we use Monte Carlo methods to compare the :nite sample size and power properties
of the tests discussed in Sections 2–4 against processes which display either shifts from
I(0) to I(1) or from I(1) to I(0). In Section 6 we provide some generalisations to
allow for linear deterministic trends, deterministic structural breaks, and serially cor-
related innovations. Section 7 applies the statistics discussed in this paper to the US
in;ation rate. Section 8 concludes. Proofs are contained in an Appendix.

2. Tests against changes from I (0) to I (1)

In this section we will focus attention on the Gaussian unobserved components
model,

yt = dt + �t + �t ; t = 1; : : : ; T; (2.1)

�t = �t−1 + 1(t ¿ [�0T ])�t ; �0 ∈ (0; 1); (2.2)

where 1(·) is the indicator function, and �t and �t are mutually independent mean zero
IID Gaussian processes with variances 2 and 2

�
2, respectively. Although Gaussianity

has been assumed, the limiting results which follow hold under the weaker, martingale
diDerence, conditions on {�t ; �t} of Stock (1994, p. 2745). For the present, the deter-
ministic component dt is taken to be a constant; viz, dt =�0. Generalisations are given
in Section 6.1. We may set �0 equal to zero without loss of generality. It can be seen
that the data generating process [DGP] (2.1)–(2.2) yields a process which is stationary
up to and including time [�0T ] but is I(1) after the break, if and only if 2

� ¿ 0.
Consequently, a test for stationarity against a shift in persistence from stationarity to

a unit root in the context of (2.1)–(2.2) can be framed in testing the null hypothesis

H0 : 2
� = 0 (2.3)

against the (:xed) alternative hypothesis

H1 : 2
� ¿ 0: (2.4)

Following Tanaka (1996, p. 368) and Stock (1994, p. 2799), inter alia, it will also
prove useful to consider the local alternative hypothesis,

Hc : 2
� = c2=T 2; c¿ 0: (2.5)

In what follows we will derive representations for the limiting distributions of the
statistics discussed in this paper under Hc. These representations are useful in that they
can be used to delimit the asymptotic local power functions of the tests. Moreover,
since Hc reduces to H0 for c=0, these representations will reduce to the limiting null
distributions of the statistics on setting c = 0 in the expressions throughout.
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2.1. Ratio tests

BT and Kim et al. (2002) have independently proposed the test which rejects H0

for large values of the ratio statistic 1

KM (�) =
[(1 − �)T ]−2 ∑T

t=[�T ]+1(
∑t

i=[�T ]+1 �̂1; i)2

[�T ]−2 ∑[�T ]
t=1 (

∑t
i=1 �̂0; i)2

; (2.6)

where �̂0; t are the OLS residuals from the regression of yt on an intercept, t =
1; : : : [�T ], and �̂1; t are the OLS residuals from the regression of yt on an intercept,
t = [�T ] + 1; : : : ; T . Where the true breakpoint, �0, is known, KM (�) of (2.6) is eval-
uated at �= �0. Where �0 is unknown, they suggest computing the statistic KM (�) of
(2.6) for each value of �∈T, where T is a given sub-interval of [0; 1] and taking an
appropriate function of the resulting sequence of statistics. These authors investigate
three such functions of the sequence {KM (�); �∈T}. Firstly, after Andrews (1993),
the maximum over the sequence of statistics, viz.,

H1(KM ( · )) ≡ max
�∈T

KM (�): (2.7)

Secondly, Hansen’s (1991) mean score statistic,

H2(KM ( · )) ≡
∫
�∈T

KM (�) d�: (2.8)

Finally, after Andrews and Ploberger (1994), the mean-exponential statistic

H3(KM ( · )) ≡ log
{∫

�∈T

exp
(
1
2
KM (�)

)
d�
}
: (2.9)

In each case, H0 of (2.3) is rejected for large values of the Hj(KM ( · )), j=1; : : : ; 3,
statistics. 2

We now detail the limiting distributions of these statistics under Hc of (2.5).

Theorem 2.1. Let yt be generated by (2.1)–(2.2) under Hc of (2.5). Then, for 0¡
�¡ 1,

KM (·) ⇒ A1(·)=B1(·) ≡ �(·) (2.10)

Hj(KM ( · )) ⇒ Hj(�( · )); j = 1; : : : ; 3; (2.11)

1 Kim (2000) originally proposed a statistic of the form given in (2.6) but with �̂0; i and �̂1; i replaced by
the full sample OLS residuals; �̂i , from regressing yi on an intercept, i = 1; : : : ; T . Representations for the
limiting distributions of these statistics under Hc of (2.5) are provided in BT who also prove that they are
of Op(1), and hence yield inconsistent tests, under a class of DGPs which includes both (2.1)–(2.2) under
H1 of (2.4) and that considered in Theorem 3.3 of Kim (2000).

2 In the actual computations of these statistics the integrals that appear in the functionals Hj( · ),

j = 2; 3, are replaced by averages: H2(KM ( · )) = T∗−1 ∑�∗
�=�∗ KM (�) and H3(KM ( · )) =

log(T∗−1 ∑�∗
�=�∗ exp( 12KM (�))), where T∗ = [�∗T ] − [�∗T ] + 1 and T = [�∗; �∗] ⊂ [0; 1]; see also

Hansen (1997).
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where “⇒” denotes weak convergence of the associated probability measures,
A1(�) = (1 − �)−2

∫ 1
� [V∗∗

1 (r)]2 dr and B1(�) = �−2
∫ �
0 [V∗∗∗

1 (r)]2 dr, with V∗∗
1 (r) ≡

V1(r)−V1(�)− (r − �)(1− �)−1(V1(1)−V1(�)) and V∗∗∗
1 (r) ≡ V1(r)− r�−1V1(�),

and where V1(r) ≡ W0(r)+c
∫ r
�0
W∗

c (s) ds, W∗
c (s)=Wc(s)−Wc(�0), with W0(r) and

Wc(r) independent standard Brownian motions on [0; 1].

Remark 2.1. The representations given in Theorem 2.1 delimit the asymptotic local
power functions of the ratio-based statistics under Hc of (2.5) and therefore generalise
those presented in Kim et al. (2002) which apply only for c= 0; that is, under H0 of
(2.3).

Remark 2.2. Although we have assumed that �0 ∈ (0; 1), so that a break occurs under
the alternative, the results of Theorem 2.1 also apply to �0 = 0, the constant I(1)
process.

Remark 2.3. Following Harvey (2001) denote a :rst level CramRer-von Mises distribu-
tion with one degree of freedom by CvM1(1), then for c=0 and :xed �, the (marginal)
limiting distribution of KM (�) is the ratio of two independent CvM1(1) distributions.

That is, under H0 of (2.3) KM (�) ⇒
[∫ 1

0 [B1(r)]2 dr
] [∫ 1

0 [B2(r)]2 dr
]−1

where
Bj(r) ≡ Wj(r)−rWj(1), j=1; 2, with Wj(r) two independent standard Brownian mo-
tions, r ∈ [0; 1]. Asymptotic critical values for the KM (�) and Hj(KM ( · )), j=1; : : : ; 3,
statistics are provided in Table 1. 3 The critical values for the Hj(KM ( · )), j=1; : : : ; 3,
statistics pertain to T= [0:2; 0:8].
We now show that the ratio-based statistics are of at most Op(T 2) under a class

of DGPs which includes both (2.1)–(2.2) under H1 of (2.4) and that considered in
Theorem 3.3 of Kim (2000). Remarks 2.4 and 2.5 then highlight two important practical
issues.

Theorem 2.2. Consider the process yt generated by

yt = dt + zt;1; t = 1; : : : ; [�0T ]; �0 ∈ (0; 1) (2.12)

yt = dt + zt;0; t = [�0T ] + 1; : : : ; T; (2.13)

where zt;0 = zt−1;0 + ut , and zt;1 and ut are stationary processes satisfying Assumption
1 of Kim (2000, p: 99). Then KM (�), 0¡�6 �0, is of Op(T 2), while for �0 ¡�¡ 1,
KM (�) is of Op(1). Consequently, if the intersection of the intervals [0; �0] and T is
non-empty then the Hj(KM (·)), j = 1; : : : ; 3, are each of Op(T 2), they are otherwise
of Op(1).

Remark 2.4. Theorem 2.2 remains valid for the constant I(1) process, (2.12)–(2.13)
with �0 = 0; i.e., KM (�), 0¡�¡ 1, and Hj(KM (·)), j = 1; : : : ; 3, are all of Op(1).

3 All asymptotic critical values reported in this paper were obtained by direct simulation of the relevant
limiting null functionals, obtained for c = 0, for samples of size 1000 over 10000 replications. The random
number generator of the matrix programming language Ox 2.0 of Doornik (1998) was used.
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Table 1
Upper tail critical values for the tests: level and linear trend

Level 90% 95% 99% Trend 90% 95% 99%

KM (�) 4.107 6.057 12.095 KM (�) 2.734 3.675 6.202
H1(KM (:)) 13.630 18.183 29.890 H1(KM (:)) 6.924 8.704 12.858
H2(KM (:)) 3.486 4.611 7.507 H2(KM (:)) 2.324 2.858 4.231
H3(KM (:)) 3.328 5.128 10.526 H3(KM (:)) 1.478 1.931 3.448
H1(NM(:; 1)) 0.783 0.933 1.265 H1(NM(:; 1)) 0.233 0.271 0.349
H2(NM(:; 1)) 0.301 0.375 0.541 H2(NM(:; 1)) 0.105 0.123 0.164
H3(NM(:; 1)) 0.154 0.191 0.279 H3(NM(:; 1)) 0.053 0.062 0.083
H1(S1(:)) 1.224 1.586 2.529 H1(S1(:)) 0.690 0.897 1.443
H2(S1(:)) 0.729 0.987 1.590 H2(S1(:)) 0.297 0.373 0.563
H3(S1(:)) 0.374 0.505 0.822 H3(S1(:)) 0.151 0.193 0.297
maxH1 (S) 1.561 1.974 2.939 maxH1 (S) 0.866 1.120 1.650
maxH2 (S) 0.913 1.214 1.787 maxH2 (S) 0.354 0.439 0.638
maxH3 (S) 0.473 0.631 0.940 maxH3 (S) 0.182 0.227 0.335
maxH1 (K) 18.066 22.720 35.252 maxH1 (K) 8.598 10.250 14.916
maxH2 (K) 4.629 5.883 9.121 maxH2 (K) 2.877 3.406 4.852
maxH3 (K) 5.071 7.205 12.950 maxH3 (K) 1.949 2.462 4.135
S1(0:2) 0.502 0.670 1.056 S1(0:2) 0.159 0.199 0.289
S1(0:3) 0.580 0.778 1.298 S1(0:3) 0.175 0.217 0.323
S1(0:4) 0.679 0.922 1.516 S1(0:4) 0.206 0.256 0.382
S1(0:5) 0.757 1.030 1.687 S1(0:5) 0.250 0.312 0.460
S1(0:6) 0.842 1.162 1.885 S1(0:6) 0.337 0.426 0.648
S1(0:7) 0.905 1.241 2.189 S1(0:7) 0.458 0.601 0.979
S1(0:8) 1.026 1.410 2.347 S1(0:8) 0.637 0.872 1.477

The ratio-based tests will therefore not display power which tends to unity as T → ∞
against processes with constant persistence—either processes displaying constant I(1)
behaviour or constant I(0) behaviour (the null model).

Remark 2.5. Where �0 is unknown, the Hj(KM (·)), j = 1; : : : ; 3, statistics will not
yield consistent inference if the intersection of the intervals [0; �0] and T is empty.
This point has not been recognised by either Kim (2000) or Kim et al. (2002) and
Theorem 2.2 therefore corrects this error in their stated results.
BT and Kim et al. (2002) independently propose �̂M = argmax�∈T �M (�) as an es-

timator for the breakpoint �0, in the context of (2.12)–(2.13), where �M (�) = ([(1 −
�)T ]−2 ∑T

t=[�T ]+1 �̂21; t)([�T ]
−2 ∑[�T ]

t=1 �̂20; t)
−1. This estimator is T -consistent for �0, pro-

vided �0 ∈T. Simulation evidence reported in Tables 5.5a–5.5b of BT shows that �̂M
performs well in practice.

2.2. LBI tests

Consider again (2.1)–(2.2) with �0 known. Using King and Hillier (1985, Eq. (6),
p. 99), the LBI test of H0 of (2.3) against H1 of (2.4) is de:ned by the critical region

S1(�0) = ̂−2(T − [�0T ])−2�̂′A(�0)�̂¿ ‘; (2.14)
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where �̂ ≡ (�̂1; : : : ; �̂T )′, ̂2 =T−1 ∑T
t=1 �̂2t , and ‘ a positive constant. The matrix A(�0)

in (2.14) is the variance covariance matrix of � ≡ (�1; : : : ; �T )′ which therefore has
(i; j)th element equal to min{i − [�0T ]; j − [�0T ]}, i; j= [�0T ] + 1; : : : ; T , and all other
elements equal to zero. Straightforward algebra then demonstrates that S1(�0) of (2.14)
may be written as

S1(�0) = ̂−2(T − [T�0])−2
T∑

t=[�0T ]+1

(
T∑
j=t

�̂j

)2
: (2.15)

Remark 2.6. Note that S1(0) is precisely the stationary test proposed by NM; viz.,

NM= T−2̂−2
T∑
t=1


 t∑

j=1

�̂j




2

; (2.16)

which is therefore LBI against the constant I(1) alternative.
Where �0 is unknown there is no LBI test of H0 against H1. Here we again con-

sider the functions Hj(S1(·)), j = 1; : : : ; 3, of (2.7)–(2.9) applied to the sequence
{S1(�); �∈T}.
We now detail the limiting distributions of the above statistics under Hc of (2.5)

and demonstrate that they are of Op(T ) under :xed alternatives.

Theorem 2.3. Let yt be generated by (2.1)–(2.2). Then, for 06 �¡ 1,

S1(·) ⇒ !1(·) (2.17)

Hj(S1(·)) ⇒ Hj(!1( · )); j = 1; : : : ; 3; (2.18)

where !1(�) = (1 − �)−2
∫ 1
� [V1(r) − rV1(1)]2 dr, V1(r) as de,ned in Theorem 2.1.

Relevant asymptotic critical values are given in Table 1. The NM test, NM of (2.16),
has a CvM1(1) limiting null distribution; critical values are given in Table 1 of KPSS,
p. 166.

Theorem 2.4. If yt is generated by (2.12)–(2.13), then both S1(�), 06 �¡ 1, and
Hj(S1(·)), j=1; : : : ; 3, are of Op(T ). This result also holds if �0 =0 in (2.12)–(2.13);
cf. Remark 2.4.

Remark 2.7. This is an important result. It tells us that, contrary to current practice
in applied work, a rejection by the NM/KPSS tests cannot be taken to imply that the
process under test is a constant I(1) process.
Where �0 is known, NM of (2.16) makes no use of that information. It therefore

seems worthwhile applying the NM statistic to only the last T − [�0T ] observations;
i.e.,

NM(�0; 1) = (T − [�0T ])−2̂−2
1

T∑
t=[�0T ]+1


 t∑

j=[�0T ]+1

�̂1; j




2

; (2.19)
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where �̂1; t are de:ned below (2.6), and ̂2
1 = (T − [�0T ])−1 ∑T

t=[�0T ]+1 �̂21; t . Notice that
NM(�0; 1) is the numerator of KM (�0) of (2.6), scaled by the variance estimator ̂2

1.
If �0 is not known the functions Hj(NM(·; 1)), j = 1; : : : ; 3, of (2.7)–(2.9) applied to
the sequence {NM(�; 1); �∈T}, might be considered. Notice that {NM(�; 1); �∈T}
is the analogue of the sequence of reverse recursive Dickey-Fuller statistics of BLS.
We now detail the limiting distributions of the above statistics under Hc of (2.5)

and demonstrate that they are of Op(T ) under :xed alternatives.

Theorem 2.5. Let yt be generated by (2.1)–(2.2). Then, under Hc of (2.5), for 0¡
�¡ 1,

NM(·; 1) ⇒ A1(·) (2.20)

Hj(NM( · ; 1)) ⇒ Hj(A1( · )); j = 1; : : : ; 3; (2.21)

where A1(�) is as de,ned in Theorem 2.1.

Remark 2.8. For c = 0 and :xed �, NM(�; 1) ⇒ CvM1(1). Asymptotic critical
values for the Hj(NM( · ; 1)), j = 1; : : : ; 3, statistics are provided in Table 1.

Theorem 2.6. If yt is generated by (2.12)–(2.13), then both NM(�; 1), 0¡�¡ 1,
and Hj(NM(·; 1)), j=1; : : : ; 3, are of Op(T ). These results also hold for the constant
I(1) process, (2.12)–(2.13) with �0 = 0.

3. Tests against changes from I (1) to I (0)

Suppose now that �t in (2.1) is generated according to

�t = �t−1 + 1(t6 [�0T ])�t ; (3.1)

t=1; : : : ; T , with �0 and �t as de:ned in Section 2. Notice that �0 =1 now corresponds
to the constant I(1) model. The process yt generated by (2.1)–(3.1) is I(1) up to
and including time [�0T ] if 2

� ¿ 0, but reverts to I(0) behaviour after the break.
Consequently, a test for stationarity against a shift in persistence from a unit root to
stationarity can again be framed in testing H0 of (2.3) against H1 of (2.4), but now in
the context of (2.1)–(3.1).
The level �t of (3.1) is observed to ‘freeze’ at time [T�0]. 4 Interestingly, under this

scheme for :nite T , the process is stationary after the break but, asymptotically, the
process is non-stationary after the breakpoint, since the variance of �[�0T ] is a linear
function of T .

4 Other parameterisations can allow for diDerent transitions between the two regimes under the I(1) to
I(0) shift process. One possibility is �t = 1(t6 [�0T ])(�t−1 + �t). Here �t vanishes from (2.1) after the
break point. We believe that (3.1) is probably of most practical interest and so we focus on that case.
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3.1. Ratio tests

When the data are generated by (3.4)–(3.5), of which (2.1)–(3.1) under H1 of
(2.4) is a special case, KM (�) converges in probability to zero, at rate Op(T−2), for
0¡�06 �¡ 1, and is of Op(1) if �¡�06 1. The tests of Section 2.1 which reject
for large values of KM (�), 0¡�¡ 1, and Hj(KM ( · )), j = 1; : : : ; 3, will thus be
inconsistent. Now, if �0 were known rejecting for small values of KM (�0) would
clearly yield a consistent test against (3.4)–(3.5). However, where �0 is unknown the
Hj(KM (·)), j= 1; : : : ; 3, statistics are all of Op(1), and so tests which reject for small
values of these statistics will not yield consistent inference.
From the foregoing results it is seen that tests which reject for large values of

statistics based on the reciprocal of KM (�) can provide consistent inference. We now
detail their limiting distributions under Hc of (2.5) and explore their behaviour against
:xed alternatives.

Theorem 3.1. Let yt be generated by (2.1)–(3.1) under Hc of (2.5). Then, for 0¡
�¡ 1,

(KM (·))−1 ⇒ A2(·)=B2(·) ≡ �1(·) (3.2)

Hj((KM ( · ))−1) ⇒ Hj(�1( · )); j = 1; : : : ; 3; (3.3)

where A2(�)=�−2
∫ �
0 [V∗∗∗

2 (r)]2 dr and B2(�)=(1−�)−2
∫ 1
� [V∗∗

2 (r)]2 dr with V∗∗
2 (r) ≡

V2(r)−V2(�)− (r − �)(1− �)−1(V2(1)−V2(�)), V∗∗∗
2 (r) ≡ V2(r)− r�−1V2(�), and

V2(r) ≡ W0(r) + c
{∫ min(r;�0)

0 Wc(s) ds+ 1(r ¿�0)[(r − �0)Wc(�0)]
}
.

Remark 3.1. For c = 0, the asymptotic distribution of (KM (�))−1 is equal to, but
not independent of, that of the KM (�) statistic. For the same reason, provided T is
symmetric about 0:5, the asymptotic critical values for the Hj((KM ( · ))−1) statistics
will coincide with those of the corresponding Hj(KM ( · )), j = 1; : : : ; 3, statistics.
Asymptotic critical values for these tests may therefore be taken from Table 1.
In Theorem 3.2 we now demonstrate that the above statistics are of at most Op(T 2)

under a class of DGPs which includes (2.1)–(3.1) under H1 of (2.4).

Theorem 3.2. Consider the process yt generated by

yt = dt + zt;0; t = 1; : : : ; [�0T ]; �0 ∈ (0; 1) (3.4)

yt = dt + z[�0T ];0 + zt;1; t = [�0T ] + 1; : : : ; T; (3.5)

where zt; j, j=0; 1 and ut are as de,ned in Theorem 2.2. Then, for �¿ �0, (KM (�))−1

is of Op(T 2), while for �¡�0, (KM (�))−1 is of Op(1). Consequently, if the intersec-
tion of the intervals [�0; 1] and T is non-empty then the Hj((KM (·))−1, j= 1; : : : ; 3,
are each of Op(T 2), but are otherwise of Op(1).

Remark 3.2. In the context of (3.4)–(3.5), (KM (�))−1, 0¡�¡ 1, and Hj

((KM (·))−1), j = 1; : : : ; 3, are of Op(1) and hence yield inconsistent tests if �0 = 1,
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the constant I(1) model. Moreover, where �0 is unknown, the Hj(KM (·)), j=1; : : : ; 3,
statistics will not yield consistent inference if the intersection of the intervals [�0; 1]
and T is empty; cf. Remarks 2.4 and 2.5.
Finally, and by analogy to results in Section 2.1, the estimator �̂M=argmin�∈T �M (�),

where �M (�) is as de:ned in Section 2.1, is T -consistent, provided �0 ∈T, for the
breakpoint �0 in the context of (3.4)–(3.5).

3.2. LBI tests

Consider (2.1)–(3.1) with �0 assumed known. Using King and Hillier (1985,
Eq. (6), p. 99), the LBI test of H0 of (2.3) against H1 of (2.4) is seen to be de-
:ned by the critical region

S0(�0) = ̂−2([�0T ])−2�̂′A1(�0)�̂¿ ‘ (3.6)

where �̂ and ̂2 are as de:ned in Section 2.3 and A1(�0), the variance covariance matrix
of � ≡ (�1; : : : ; �T )′, has (i; j)th element equal 5 to min{i; j; [�0T ]}, i; j=1; : : : ; T , from
which it follows that (3.6) may be re-written as

S0(�0) = ̂−2([T�0])−2
[�0T ]∑
t=1

(
T∑
k=t

�̂k

)2
: (3.7)

Remark 3.3. Notice that S0(1) coincides with the NM statistic, NM of (2.16).
Where �0 is unknown there is no LBI test of H0 against H1. Here we again con-

sider the functions Hj(S0(·)), j = 1; : : : ; 3, of (2.7)–(2.9) applied to the sequence
{S0(�); �∈T}.
We now detail the limiting distributions of the above statistics under Hc of (2.5) and

demonstrate the consistency of tests based upon these statistics under :xed alternatives.

Theorem 3.3. Let yt be generated by (2.1)–(3.1) under Hc of (2.5). Then, for 0¡
�6 1,

S0(·) ⇒ !0(·); (3.8)

Hj(S0(·)) ⇒ Hj(!0( · )); j = 1; : : : ; 3; (3.9)

where !0(�) = �−2
∫ �
0 [V2(r) − rV2(1)]2 dr, V2(r) as de,ned in Theorem 3.1.

Remark 3.4. Asymptotic critical values for the Hj(S0(·)), j = 1; : : : ; 3, statistics may
again be obtained from Table 1 using those given for the corresponding Hj(S1(·))
statistic. For the case of a known breakpoint, critical values for S0(�0), are as given
for S1(1 − �0).

5 For the alternative formulation given for �t in footnote 3, A1(�0) has (i; j)th element equal to min{i; j},
i; j = 1; : : : ; [�0T ], and all other elements equal to zero, from which the resulting LBI test can be shown to
reject for large values of the statistic S∗

0 (�0) = ̂−2([T�0])−2 ∑[�0T ]
t=1 (

∑[�0T ]
k=t �̂k)2.
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Theorem 3.4. If yt is generated by (3.4)–(3.5), then both S0(�), 0¡�6 1, and
Hj(S0(·)), j=1; : : : ; 3, are of Op(T ). These results also hold if �0 = 1 in (3.4)–(3.5);
cf. Remark 3.2.

Remark 3.5. As demonstrated in the proof of Theorems 3.4 and 2.4, the OLS residuals
�̂ t are of Op(T 1=2) under either (2.12)–(2.13) or (3.4)–(3.5); i.e., under either direction
of change. Consequently, the S1(�), 06 �¡ 1, Hj(S1(·)), j = 1; : : : ; 3, statistics and
the S0(�), 0¡�6 1, and Hj(S0(·)), j=1; : : : ; 3, statistics will all be of Op(T ). That
is, the LBI-based tests provide consistent inference even where neither the breakpoint,
�0, nor the direction of change are known.
By analogy to the sub-sample NM tests of Section 2.2, if �0 is known it seems

worthwhile applying the NM statistic to only the :rst [�0T ] observations; i.e.

NM(0; �0) = ([�0T ])−2̂−2
0

[�0T ]∑
t=1


 t∑

j=1

�̂0; j




2

; (3.10)

where �̂0; t are as de:ned below (2.6), and ̂2
0 = ([�0T ])−1 ∑[�0T ]

t=1 �̂20; t . Notice that
NM(0; �0) is the denominator of KM (�0) of (2.6), scaled by the variance estima-
tor ̂2

0. If �0 is unknown the functions Hj(NM(0; ·)), j=1; : : : ; 3, given in (2.7)–(2.9)
applied to the sequence {NM(0; �); �∈T}, can be considered. Notice that the se-
quence {NM(0; �); �∈T} is the analogue of the sequence of recursive Dickey-Fuller
unit root statistics considered by BLS.
We now detail the limiting distributions of the above statistics under Hc of (2.5), and

show that they are of Op(T ) under both :xed I(1)-I(0) and constant I(1) alternatives.

Theorem 3.5. Let yt be generated by (2.1)–(3.1). Then, under Hc of (2.5), for 0¡
�¡ 1,

NM(0; ·) ⇒ A2(·) (3.11)

Hj(NM(0; ·)) ⇒ Hj(A2( · )); j = 1; : : : ; 3; (3.12)

where A2(�) is as de,ned in Theorem 3.1.

Remark 3.6. For c = 0 and :xed �, NM(0; �) ⇒ CvM1(1). Asymptotic critical
values for the Hj(NM(0; · )), j=1; : : : ; 3, statistics for T=[0:2; 0:8] are as provided
for the Hj(NM( · ; �)), j=1; : : : ; 3, statistics respectively in Table 1; cf. Remark 3.1.

Theorem 3.6. If yt is generated by (3.4)–(3.5), then both NM(0; �), 0¡�¡ 1,
and Hj(NM(0; ·)), j = 1; : : : ; 3, are of Op(T ). These results also hold if �0 = 1 in
(3.4)–(3.5).

Remark 3.7. As demonstrated in the proof of Theorem 3.2, the second sub-sample OLS
residuals �̂1; t , t = [�T ] + 1; : : : ; T , are of Op(T 1=2), for all �¡�0, under the I(1)-I(0)
change DGP, (3.4)–(3.5). It therefore follows that NM(�; 1) will be of Op(T ), for
all �¡�0, and, consequently, the Hj(NM( · ; 1)), j = 1; : : : ; 3, statistics will all be
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of Op(T ), provided the intersection of [0; �0) and T is non-empty. Similarly, under
the I(0)-I(1) change DGP, (2.12)–(2.13), from the proof of Theorem 2.2, the :rst
sub-sample OLS residuals �̂0; t , t = 1; : : : ; [�T ], are of Op(T 1=2), and, hence, NM(0; �)
will be of Op(T ), for all �¿�0. Consequently, the Hj(NM(0; · )), j=1; : : : ; 3, statis-
tics will all be of Op(T ), provided the intersection of (�0; 1] and T is non-empty. Cf.
Remark 3.5.
To conclude this Section we note that the limiting distributions for the tests of Section

2 under the DGPs of Section 3, and the tests of Section 3 under the DGPs of Section
2 can be obtained simply by replacing V1(r) by V2(r), and vice versa, throughout. To
illustrate, if DGP (2.1)–(3.1) holds then under Hc of (2.5), S1(·) ⇒ !3(·), where
!3(�)= (1− �)−2

∫ 1
� [V2(r)− rV2(1)]2 dr. Moreover, since for c=0, V1(r) and V2(r)

are identically distributed it is clear that the asymptotic critical values for the tests
considered in this Section can be obtained from Table 1; cf. Remarks 3.1, 3.4 and 3.6.

4. Testing when the direction of change is unknown

As shown above the ratio-based tests against I(0)-I(1) alternatives are inconsistent
against :xed I(1)-I(0) alternatives, and vice versa. If the direction of change were
unknown this might lead one to consider two-tailed tests, rejecting for either small
or large values of the ratio-based statistics of Section 2.1. However, for the reasons
outlined at the start of Section 3.1 this approach will only work if �0 is known. If
not, such a procedure could only be consistent against changes from I(0) to I(1). In
contrast, as noted in Remarks 3.5 and 3.7, the consistency results stated in Theorems
2.4 and those stated in Theorem 2.6 for the Hj(NM(·; 1)), j=1; : : : ; 3, statistics remain
valid in the case of :xed I(1)-I(0) alternatives, as do those provided in Theorems 3.4
and those provided in Theorem 3.6 for the Hj(NM(0; ·)), j=1; : : : ; 3, statistics, in the
case of I(0)-I(1) alternatives.
Monte Carlo results presented in Section 5 suggest that the :nite sample power

properties of the LBI-based tests of Sections 2.2 and 3.2 when directed against the
‘wrong’ alternative (by which we mean the application of tests for I(0)-I(1) changes
when the change is from I(1)-I(0), and vice versa) are signi:cantly diminished, relative
to their power against the alternative for which they were designed. Since the LBI-based
tests reject for large positive values, taking the maximum over the statistics upon which
those tests are based seems worth exploring. We will also apply the same principle to
the statistics based on the KM (·) and (KM (·))−1 sequences. 6 We therefore propose
the following pairwise statistics

maxHj(S) ≡ max{Hj(S1(·)); Hj(S0(·))}; j = 1; 2; 3; (4.13)

maxHj(K) ≡ max{Hj(KM (·)); Hj((KM (·))−1)}; j = 1; 2; 3; (4.14)

6 One might also consider adopting the same approach for the sub-sample NM-based tests of Sections 2.2
and 3.2. However, these turned out to have very low power and, hence, are omitted.
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in each case rejecting for large values of the statistics. Since max(x; y) is continuous
in both arguments, we may apply the continuous mapping theorem (CMT) directly to
preceding results to establish the following theorem for the pairwise test statistics.

Theorem 4.1. Let yt be generated by (2.1)–(3.1) under Hc of (2.5). Then,

maxHj(S) ⇒ max{Hj(!1(·)); Hj(!0(·))}; j = 1; 2; 3; (4.15)

maxHj(K) ⇒ max{Hj(�(·)); Hj(�1(·))}; j = 1; 2; 3: (4.16)

The pairwise LBI-based test statistics are Op(T ) under :xed I(1)-I(0), :xed I(0)-I(1)
and constant I(1) alternatives, while the pairwise ratio-based tests are Op(T 2) (provided
�0 ∈T) under :xed I(1)-I(0) and :xed I(0)-I(1) alternatives but are inconsistent
against constant I(1) alternatives. These results follow immediately from the properties
of the statistics over which the maxima are taken; see Theorems 2.2, 2.4, 3.2 and 3.4.
Asymptotic critical values from the limiting null distributions of Theorem 4.1 are

provided in Table 1. The :nite sample size and power properties of the tests based on
these pairwise maximum statistics are explored in Sections 5 and 6.

5. Numerical results

In this Section we use Monte Carlo simulation methods to investigate the :nite
sample size and power properties of the tests developed in Sections 2–4 against data
generated according to either (2.1)–(2.2) or (2.1)–(3.1), setting 2=1 throughout with
no loss of generality. Both the tests which require the knowledge of the true breakpoint
and those which do not are considered; in the former case we assume the breakpoint
to be correctly speci:ed. We investigate the impact of varying the signal-to-noise ratio
among �=0; 0:01; 0:025; 0:05; 0:10; 0:25; 05, and the breakpoint among �0=0:3; 0:5; 0:7.
All experiments were programmed using the random number generator of Ox 2.20
and 10; 000 replications. All results refer to tests run at the nominal 5% asymptotic
level, for a sample of size T = 100. Other signi:cance levels and sample sizes were
considered but gave qualitatively similar results. As would be expected, size and power
properties improved for all of the tests considered as sample sizes were increased. The
corresponding results for T = 200 are reported in BT.
In Table 2 we report empirical rejection frequencies, size under H0 : �=0 and power

under H1 : � ¿ 0, for the case of a change from I(0) to I(1). Both the ratio-based
tests of Section 2.1 and the residual-based tests of Section 2.2 all display good size
and power properties. The size of these tests all lie close the asymptotic 5% level,
with impressive power properties where �¿ 0:1. It is interesting to note that power is
always higher the smaller is �0. This occurs because the smaller is �0, the greater the
proportion of the sample containing a random walk component. When �0 is known,
the highest power is achieved using the LBI statistic S1(�0), particularly near the
null hypothesis, as one would expect. To illustrate, S1(0:3) rejects H0 55.56% of the
time when � = 0:1, as compared with 43.21% and 32.88% for the NM(0:3; 1) and
KM (0:3), respectively.



Table 2
Empirical rejection frequencies for the tests against I(0)-I(1), T = 100

� = 0 � = 0:01 � = 0:025 � = 0:05 � = 0:1 � = 0:25 � = 0:5

�0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7

KM (�0) 5.14 5.03 5.35 5.57 5.16 5.35 7.43 6.30 5.82 14.20 9.80 7.12 32.88 22.30 11.94 70.38 57.07 35.90 90.49 83.11 65.24
H1(KM (:)) 4.35 4.35 4.35 4.48 4.63 4.49 5.46 5.66 5.05 9.97 9.91 7.32 27.29 24.76 16.18 67.00 65.43 49.70 89.34 89.05 78.54
H2(KM (:)) 5.36 5.36 5.36 5.71 5.78 5.75 7.05 7.41 6.75 12.23 12.92 10.37 28.46 31.07 22.84 64.37 70.68 59.48 86.63 91.23 84.36
H3(KM (:)) 5.45 5.45 5.45 5.64 5.67 5.53 6.87 6.97 6.36 12.02 11.96 8.96 30.49 28.58 19.32 69.82 69.10 54.31 90.62 90.64 81.26
NM 5.28 5.28 5.28 6.34 5.89 5.44 11.70 9.10 6.56 27.53 19.89 10.40 54.30 44.40 23.91 84.80 76.49 57.76 95.19 90.40 77.01
NM(�0 ; 1) 5.08 5.29 5.22 5.77 5.44 5.38 8.46 7.15 5.81 18.68 12.62 7.70 43.21 29.64 15.59 77.65 65.07 43.26 91.77 84.43 67.80
H1(NM 2.89 2.89 2.89 3.16 3.16 3.04 4.94 4.61 3.81 12.66 11.48 7.25 38.58 33.62 20.17 81.48 76.43 57.86 95.99 93.27 81.92
(.,1))
H2(NM 4.66 4.66 4.66 4.87 4.86 4.72 7.47 7.26 6.18 16.29 15.56 11.58 41.76 39.28 27.67 82.61 79.90 65.60 96.32 94.81 85.75
(.,1))
H3(NM 4.68 4.68 4.68 5.04 4.93 4.83 7.66 7.42 6.33 16.73 15.86 11.64 42.79 39.97 27.97 83.43 80.28 65.80 96.47 94.89 85.80
(.,1))
S1(�0) 5.47 5.60 4.20 6.71 6.06 4.62 12.31 10.28 6.54 28.41 22.20 12.20 55.56 47.79 30.40 85.02 79.34 65.28 95.43 92.52 83.56
H1(S1(:)) 5.93 5.93 5.93 6.73 6.51 6.26 10.86 10.17 8.33 24.46 21.12 14.67 51.92 46.94 33.43 84.55 80.70 68.52 95.10 94.12 86.81
H2(S1(:)) 5.42 5.42 5.42 6.24 5.87 5.67 11.31 10.23 7.84 25.94 22.09 13.58 52.48 47.52 31.75 83.11 79.77 65.88 94.29 93.29 84.00
H3(S1(:)) 5.53 5.53 5.53 6.31 5.99 5.76 11.55 10.39 8.10 26.06 22.34 13.85 52.95 47.78 32.23 83.73 80.24 66.63 94.61 93.55 84.49
max H1 (S) 5.05 5.05 5.05 5.92 5.56 5.39 9.51 8.03 6.46 23.02 17.63 11.53 51.93 42.26 28.09 85.60 77.72 64.47 95.75 92.68 83.73
max H2 (S) 4.87 4.87 4.87 5.99 5.44 5.09 10.80 8.63 6.21 25.53 19.09 11.21 53.89 44.38 26.92 85.44 77.55 62.09 95.50 91.86 81.29
max H3 (S) 4.75 4.75 4.75 5.84 5.46 4.94 10.68 8.56 6.14 25.21 18.88 11.23 53.71 44.15 27.09 85.57 77.77 62.53 95.59 92.01 81.78
max H1 (K) 4.42 4.42 4.42 4.57 4.51 4.54 5.45 5.37 4.81 10.17 8.30 5.82 29.37 21.37 12.56 69.25 61.78 43.07 89.33 86.56 73.92
max H2 (K) 5.16 5.16 5.16 5.48 5.40 5.25 6.75 6.83 5.89 11.31 10.45 8.44 28.53 25.23 17.67 66.31 65.24 52.59 87.04 88.55 80.47
max H3 (K) 5.33 5.33 5.33 5.36 5.37 5.39 6.57 6.40 5.67 11.99 9.94 7.01 32.29 23.95 14.61 71.32 64.72 46.28 90.46 88.01 76.02
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The standard NM test performs well: for small values of �0 its power is almost as
high as the LBI test S1(�0), as one might expect given that S1(0) ≡ NM. It is,
however, very clearly dominated on power by the S1(�0) test for larger values of
�0. The standard NM test also displays superior power to the sub-sample NM tests
computed for known �0. This observation can be explained in terms of local power
functions. The :xed alternative hypothesis H1 : � ¿ 0 of our simulations corresponds
to the local alternative Hc : � = c=T for the NM statistic and Hc′ : � = c′=(1 − �0)T
for the NM(�0; 1), since the latter is constructed using only (1 − �0)T observations.
Therefore the two local power functions are comparable when c′ = c(1 − �0), which
corresponds to comparing the rejection frequencies for � and �=(1− �0) respectively.
For example, when �0=0:5 one should compare the observed rejection frequencies for,
say, �=0:025 in the case of NM with those for �=0:05 in the case of NM(�0; 1),
namely 9.10% against 12.62%.
The performance of the max, mean, mean-exp tests based on the Hi(:), i = 1; 2; 3,

functions respectively, which do not assume knowledge of �0, is broadly comparable
with the corresponding statistics for known �0. For example, if the functions Hj(S1(:)),
j = 1; 2; 3, of the {S1(�); �∈T} sequence are adopted, the power loss incurred rel-
ative to the (theoretically) best test S1(�0), which requires knowledge of �0, is very
small. Overall, the max-test, H1(·), seems to be slightly less reliable in terms of size,
particularly when applied to the {NM(�; 1); �∈T} sequence and is also generally
outperformed on power by the mean and mean-exp tests, with the latter apparently
preferable for the tests of Section 2.2, especially so for small values of �. The highest
power is displayed by the tests obtained from the {S1(�); �∈T} sequence, followed
by those obtained from the {NM(�; 1); �∈T} and {KM (�); �∈T} sequences, in that
order. In general the Hj(S1(:)), j = 1; 2; 3, tests are also signi:cantly more powerful
than the sub-sample NM test, NM(�0; 1), and the ratio test, KM (�0), both of which
require knowledge of �0, and largely comparable with the standard NM test for �0=0:3,
but higher otherwise, increasingly so as �0 increases. For example, with � = 0:1 and
�0 = 0:7 the rejection probabilities of the Hj(S1(:)), j = 2; 3, tests lie around 32%, as
opposed to 28% for the best of the subsample NM-type tests, 23.91% for the standard
NM test, and 22.84% for the best of the ratio-based tests.
The :nal six rows of Table 2 report results for the tests based on the pairwise max-

imum statistics of (4.16). Recall from Section 4 that these are designed to be powerful
against both the I(0)-I(1) and I(1)-I(0) alternatives. The power of the LBI-based
statistics maxHj(S), j = 1; : : : ; 3, against I(0)-I(1) turns out to be comparable to that
of the standard NM test, NM, when �06 0:5 and generally higher when �0 = 0:7.
In general, tests based on the maxHj(S) statistics are less powerful than those based
on the Hj(S1(:)), j = 1; 2; 3, statistics although the power of the latter is of course
only attainable with a priori knowledge of the direction of change. Tests based on the
maxHj(K), j=1; : : : ; 3, statistics are signi:cantly outperformed by those based on the
maxHj(S), j = 1; : : : ; 3, and by the standard NM test.
Simulation results for the case of changes from I(1) to I(0) are reported in Table 3.

It is striking that, for the tests proposed in this paper, the results in Table 3 are almost
identical to those reported in Table 2 if one exchanges �0 with 1 − �0. The intuition
behind this is that a process which switches from I(1) to I(0) behaviour at � may



Table 3
Empirical rejection frequencies for the tests against I(1)-I(0), T = 100

� = 0 � = 0:01 � = 0:025 � = 0:05 � = 0:1 � = 0:25 � = 0:5

�0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7

1=KM (�0) 4.87 5.12 5.27 4.90 5.36 5.38 5.25 6.26 7.39 6.67 9.68 14.54 11.97 21.98 33.02 36.43 56.49 70.32 64.97 82.53 90.24
H1(1=KM (:)) 4.22 4.22 4.22 4.34 4.44 4.55 5.02 5.57 5.69 7.21 9.70 10.30 16.33 25.40 28.03 48.71 64.85 68.37 77.75 88.63 90.16
H2(1=KM (:)) 5.32 5.32 5.32 5.45 5.54 5.51 6.44 7.44 7.31 10.37 13.30 12.41 22.70 31.10 29.60 58.81 70.45 66.48 83.20 91.71 87.76
H3(1=KM (:)) 5.11 5.11 5.11 5.33 5.48 5.45 6.12 6.90 6.87 8.98 11.77 12.64 19.61 28.86 31.37 53.04 68.34 71.03 80.29 90.65 91.27
NM 5.28 5.28 5.28 5.42 5.96 6.32 6.50 9.04 11.56 9.89 19.28 27.25 22.65 43.08 54.41 56.19 74.91 84.57 75.99 89.62 95.13
NM(0; �0) 6.25 5.43 5.45 6.54 5.70 6.22 7.16 7.56 9.61 9.12 13.21 19.99 17.24 31.15 44.03 46.59 66.10 78.03 69.92 85.19 92.19
H1(NM 3.86 3.86 3.86 3.84 4.08 3.97 4.93 5.78 6.10 8.23 12.77 14.69 21.28 35.78 42.04 59.75 77.60 83.38 81.79 93.72 96.35
(0,.))
H2(NM 5.69 5.69 5.69 5.90 6.13 6.19 7.34 8.46 8.71 12.18 17.06 18.11 29.33 41.00 44.66 66.28 80.94 84.67 85.50 95.16 96.83
(0,.))
H3(NM 5.83 5.83 5.83 6.09 6.30 6.36 7.36 8.68 9.12 12.39 17.45 18.67 29.55 41.66 45.56 66.37 81.32 85.21 85.61 95.26 96.98
(0,.))
S0(�0) 3.72 4.94 5.48 4.13 6.05 6.60 5.61 9.70 11.95 10.60 21.23 27.57 27.74 45.66 54.94 63.33 77.37 84.64 81.71 91.33 95.14
H1(S0(:)) 4.89 4.89 4.89 5.26 5.68 5.74 6.92 8.79 9.31 12.03 18.80 22.59 29.67 43.95 50.39 66.03 78.55 83.32 84.65 92.82 94.72
H2(S0(:)) 4.68 4.68 4.68 5.08 5.79 6.02 6.87 9.18 10.66 11.97 20.17 25.22 29.10 44.94 51.40 63.36 77.36 82.03 82.00 91.99 93.94
H3(S0(:)) 4.70 4.70 4.70 5.18 5.82 6.09 6.95 9.24 10.63 12.14 20.27 25.35 29.37 45.28 51.81 64.03 77.67 82.65 82.46 92.25 94.19
max H1 (S) 5.05 5.05 5.05 5.35 5.51 5.84 6.44 7.95 9.37 10.29 16.48 22.16 25.50 40.25 50.99 62.10 76.08 84.94 82.07 91.35 95.83
max H2 (S) 4.87 4.87 4.87 5.25 5.66 5.94 6.20 8.70 10.20 10.45 18.24 25.31 25.01 41.84 54.05 59.95 75.81 84.90 79.38 90.71 95.54
max H3 (S) 4.75 4.75 4.75 5.07 5.66 5.81 6.23 8.50 9.97 10.42 18.03 24.94 25.22 41.84 53.89 60.30 75.93 85.00 79.97 90.91 95.58
max H1 (K) 4.42 4.42 4.42 4.61 4.61 4.72 4.88 5.28 5.83 6.21 8.04 10.16 12.34 21.51 28.60 42.26 60.89 68.95 72.83 86.30 89.45
max H2 (K) 5.16 5.16 5.16 5.28 5.31 5.46 5.90 6.60 6.83 8.08 10.41 11.46 17.75 24.69 28.44 51.66 64.20 67.17 78.87 88.79 87.35
max H3 (K) 5.33 5.33 5.33 5.43 5.47 5.53 5.72 6.30 6.83 7.26 9.64 11.81 14.59 23.87 31.45 45.46 63.63 71.47 75.02 87.69 90.38
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also be viewed as a process with the opposite switch in behaviour at (1 − �) when
the observations are taken in reverse order. Consequently, all of the comments made
regarding the results in Tables 2 translate almost directly to the results from Tables 3.
In particular, (i) the ranking of the tests is again LBI-based, NM-based, ratio-based,
and (ii) power is higher the larger is �0.
In practice it is likely that one will not know, a priori, whether the process has

undergone a switch from I(0) to I(1) behaviour, or vice versa. It is therefore impor-
tant to investigate the power properties of tests designed to detect a switch in one
direction against a switch in the other direction. Table 4 reports simulated rejection
frequencies for the various tests designed to pick up on changes from I(0) to I(1)
when the true process switches from I(1) to I(0). We also considered the reverse
scenario but this gave qualitatively similar results; results for this case are reported
in BT.
Consider Table 4. The KM (�0) test displays power below the nominal level, while

NM(�0; 1) has power roughly equal to size. Among the tests constructed in terms
of the functionals Hj(:), j = 1; 2; 3, only the LBI-based statistics seem to provide rea-
sonable power for the whole range of breakpoint locations �0 = 0:3; 0:5; 0:7, while the
sub-sample NM and ratio-based tests have very low power when �0 is small. Overall
the ratio-based tests again perform worst. Notice that power is now higher the larger
is �0. Indeed, for �0 = 0:7 the LBI-based tests designed to detect a change from I(0)
to I(1) are often more powerful against a change in the opposite direction. Moreover,
a comparison with the results in Tables 2 and 3 shows that the standard NM test and
the max{Hj(S1(·)); Hj(S0(·))}, j = 1; 2; 3, tests of (4.16), outperform the LBI-based
tests designed for the ‘wrong’ alternative, as would be expected.
Overall, the simulation evidence is strongly in favour of using the LBI-based tests

to detect a change in the order of integration of a time series when the direction of
the change is known. If it is not, then the maximum LBI-based tests of (4.16) and the
standard NM test, NM, are preferred with the former displaying the higher power,
in general. Signi:cantly, knowledge of the time of the change does not appear to
provide any notable advantage. As a :nal point, the inconsistency of the ratio-based
tests against the ‘wrong’ alternative might be used constructively to help identify the
direction of change, where it is unknown. Indeed, the ratio-based tests should also be
useful in identifying if there is a change in persistence at all; cf. Remarks 2.4 and 3.2.
We provide an illustration of this in Section 7.

6. Generalisations

In this Section we extend our model and test statistics in three directions. Firstly,
we allow for a polynomial trend and/or structural breaks at known positions in the de-
terministic kernel dt . Secondly, we discuss testing in the presence of structural breaks
at unknown points in the sample and provide an asymptotically valid two-stage pro-
cedure for this case. Finally, as in KPSS, we extend our analysis to allow for weakly
dependent errors.



Table 4
Empirical rejection frequencies for the tests against I(0)-I(1) under the DGP I(1)-I(0), T = 100

� = 0 � = 0:01 � = 0:025 � = 0:05 � = 0:1 � = 0:25 � = 0:5

�0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7

KM (�0) 5.14 5.03 5.35 5.19 4.87 5.26 4.98 4.33 4.63 4.60 3.64 2.96 3.52 2.03 1.42 1.24 0.35 0.21 0.27 0.05 0.00
H1(KM (:)) 4.35 4.35 4.35 4.18 4.26 4.33 4.22 4.17 4.86 3.77 4.11 6.13 2.66 5.30 13.71 1.03 13.23 31.06 0.43 18.92 38.07
H2(KM (:)) 5.36 5.36 5.36 5.47 5.46 5.42 5.09 4.97 5.61 4.36 4.10 6.33 2.94 3.35 11.06 0.76 4.85 22.52 0.13 8.38 28.02
H3(KM (:)) 5.45 5.45 5.45 5.45 5.43 5.45 5.12 5.16 5.87 4.53 4.90 7.54 3.20 6.19 15.91 1.22 14.11 32.90 0.44 19.73 39.57
NM(�0 ; 1) 5.08 5.29 5.22 5.08 5.29 5.22 5.08 5.29 5.22 5.08 5.29 5.22 5.08 5.29 5.22 5.08 5.29 5.22 5.08 5.29 5.22
H1(NM(:; 1)) 2.89 2.89 2.89 2.89 2.96 2.95 2.91 3.08 3.73 2.93 3.93 8.06 2.96 8.99 26.47 3.49 40.11 69.30 6.51 68.28 89.78
H2(NM(:; 1)) 4.66 4.66 4.66 4.64 4.61 4.72 4.65 4.66 5.59 4.64 5.09 9.48 4.68 7.30 24.51 4.72 25.00 63.58 4.99 52.39 86.37
H3(NM(:; 1)) 4.68 4.68 4.68 4.69 4.66 4.83 4.70 4.74 5.69 4.70 5.22 9.88 4.74 7.78 25.83 4.80 28.32 65.49 5.13 56.26 87.62
S1(�0) 5.47 5.60 4.20 5.76 5.73 4.66 6.56 7.59 6.51 8.78 12.87 13.49 17.44 30.23 32.32 46.73 61.71 62.24 68.15 76.08 74.29
H1(S1(:)) 5.93 5.93 5.93 6.00 6.22 6.51 6.20 7.19 9.03 6.83 11.41 19.13 10.74 27.28 43.36 32.96 60.72 74.83 57.21 76.83 88.36
H2(S1(:)) 5.42 5.42 5.42 5.41 5.56 5.93 5.65 7.24 9.39 7.14 12.59 21.91 11.89 30.30 45.99 34.08 61.63 74.13 57.64 76.28 86.09
H3(S1(:)) 5.53 5.53 5.53 5.55 5.69 6.03 5.73 7.30 9.54 7.13 12.71 21.98 11.93 30.41 46.29 34.51 62.04 74.75 58.02 76.63 86.95
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6.1. Extended deterministic speci,cations

Thus far we have assumed that dt=�0 in (2.1), but the results can be easily extended
to allow dt=x′

t�, where xt is a (p×1), p¡T , :xed sequence with associated parameter
vector �. One simply needs to construct the various statistics with the OLS residuals
from the regression of yt on xt , t =1; : : : ; T . The distributions and critical values will,
however, change.
In the context of NM of (2.16), MacNeill (1978) provides the limiting distribu-

tions when xt is the p-th order polynomial trend, xt = (1; t; : : : ; tp−1; tp)′, 06p¡∞,
while Busetti and Harvey (2001) [BH] consider the possibility of structural breaks
in the trend, e.g. the broken level case, xt = (1; ht(&0))′, and the broken trend case,
xt = (1; t; ht(&0); tht(&0))′, where the indicator variable ht(&0) = 1(t ¿ [T&0]) and &0 ∈
(0; 1) is a known deterministic breakpoint.
All of the test statistics developed in this paper may be extended in exactly the same

way; that is, the OLS residuals {�̂t}Tt=1, {�̂0; t}[�T ]t=1 and {�̂1; t}Tt=[�T ]+1 must now be ob-
tained from the regression of yt on xt for t=1; : : : ; T , t=1; : : : [�T ], and t=[�T ]+1; : : : ; T ,
respectively. 7 Those tests of Sections 2 and 3 which were constructed to be LBI against
a particular alternative model for dt =�0, when modi:ed as above are correspondingly
LBI for dt = x′

t�. Denote by x(r), r ∈ [0; 1], the appropriately scaled limit on the
unit interval of the xt ; e.g. for the polynomial trend case x(r) = (1; r; : : : ; rp−1; rp)′,
16p¡∞, while for the broken trend case x(r)= (1; r; 1(r ¿&0); r:1(r ¿&0))′. Then
the limiting distributions of the statistics of Sections 2 and 3 are as detailed above,
except that dV∗

j (r), dV∗∗
j (r) and dV∗∗∗

j (r) now constitute the projection residuals of
dVj(r) projected onto the subspace generated by x(r) in L2[0; 1], L2(�; 1] and L2[0; �],
respectively. That is,

V∗
j (r)≡Vj(r) −

∫ 1

0
x(r)′ dVj(r)

(∫ 1

0
x(r)x(r)′ dr

)−1

×
∫ r

0
x(s) ds; r ∈ [0; 1]; (6.1)

V∗∗
j (r)≡Vj(r) −Vj(�) −

∫ 1

�
x(r)′ dVj(r)

(∫ 1

�
x(r)x(r)′ dr

)−1

×
∫ r

�
x(s) ds; r ∈ (�; 1]; (6.2)

and

V∗∗∗
j (r)≡Vj(r) −

∫ �

0
x(r)′ dVj(r)

(∫ �

0
x(r)x(r)′ dr

)−1

×
∫ r

0
x(s) ds; r ∈ [0; �]; (6.3)

7 When constructing the sub-sample residuals, any indicator variables should, of course, be omitted from
xt if ht(&0) assumes a :xed value throughout a given sub-sample. An obvious example occurs where �=&0.
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in each case for j = 1; 2. Notice that these formulae reduce to those given in Sections
2 and 3 for the case of xt =1. Critical values for the linear trend case, xt =(1; t)′, are
provided in Table 1. The limiting null distribution of NM of (2.16) in this case is
as a second level CramRer-von Mises distribution with one degree of freedom, denoted
CvM2(1), critical values from which can be obtained from Table 1 of KPSS, p. 166.
The case of a structural break in the trend is considered in more detail in the next
section. The stated consistency results against :xed alternatives given in Sections 2 and
3 remain valid for the general xt above, as do the corrections for weakly dependent
errors outlined in Section 6.3.
We repeated the simulation experiments of Section 5 for the linear trend case, xt =

(1; t)′. Qualitatively similar results, reported in BT, are obtained. In particular, the same
ranking of the tests applies: LBI-based, NM-based, ratio-based. Interestingly, the size
of the LBI-based tests seems somewhat more reliable for this case. As expected, power
is somewhat lower, since one additional nuisance parameter has to be estimated; see
also KPSS.

6.2. Dealing with structural breaks in the trend

We now consider further the two leading cases analysed by BH: (i) the broken
level xt = (1; ht(&0))′, and (ii) the broken trend xt = (1; t; ht(&0); tht(&0))′. In practice
an interesting case is that of &0 = �0; i.e. when a deterministic trend break and a per-
sistence change occur simultaneously. We assume this to hold for the purposes of this
section.
Suppose :rst that the breakpoint is known and consider the broken level case. Let

�̂t be the OLS residuals from the regression of yt on xt =(1; ht(&0))′, t = 1; : : : ; T . It is
then clear that �̂t=�̂0; t for t=1; : : : ; [&0T ], while �̂t=�̂1; t for t=[&0T ]+1; : : : ; T , where �̂j; t ,
j=0; 1, are de:ned below (2.6). Consequently, the statistics KM (�0), NM(�0; 1) and
NM(0; �0) are exactly as given in Sections 2 and 3, while S1(�0)=NM(�0; 1)̂2

1=̂
2

and S0(�0) =NM(0; �0)̂2
0=̂

2 where ̂2
1 and ̂2

0 are de:ned below (2.19) and (3.10)
respectively and ̂2 = T−1 ∑T

t=1 �̂2t . Consequently, the limiting null distributions of
the NM(�0; 1), NM(0; �0) S1(�0) and S0(�0) statistics are all CvM1(1), while that
of KM (�0) is as given in (2.10), with critical values taken from Table 1, for the
level case. Critical values for the full sample NM test in this case are obtained from
Table I(a) of BH, p. 134, for &0 = 0:1; 0:2; : : : ; 0:9. A similar situation occurs for the
broken trend case, except that the distribution of the sub-sample NM and LBI statistics
is now CvM2(1), and the critical values for the ratio test and full sample NM test
are obtained from the trend case of Table 1 and from Table I(b) of BH, p. 134,
respectively.
A detailed analysis of the case &0 �= �0 and of the behaviour of the statistics con-

structed in terms of the functionals Hi(:), i = 1; 2; 3, of (2.7)–(2.9) goes beyond the
scope of this paper and it is left for future research. It is, however, worthwhile to note
that for &0 ¡�0 the limiting null distribution of NM(�0; 1) remains either CvM (1)
[level case] or CvM (2) [trend case], while critical values for NM(0; �0) can be ob-
tained from Tables I(a)–(b) of BH corresponding to a breakpoint location parameter
of &0=�0. Similarly, for &0 ¿�0 the critical values of NM(�0; 1) can be taken from
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the Tables I(a)–(b) of BH with breakpoint (&0 − �0)=(1− �0) and those of NM(0; �0)
from either the CvM1(1) or CvM2(1) distribution.
The case where the timing of the deterministic break is unknown is more compli-

cated. The literature on stationarity tests has tackled this problem by estimating the
breakpoint and using that estimate as if it were the true value; see, Kurozumi (2002)
and Busetti and Harvey (2003). The same two-stage procedure can be used with our
persistence change tests. Following Bai (1997), consider the breakpoint estimator

&̂= argmin
&∈�

T∑
t=1

�̂t(&)2; (6.4)

where {�̂t(&)}Tt=1 are the OLS residuals of a regression of yt on xt = (1; ht(&))′ or
xt = (1; t; ht(&); tht(&))′ for the broken level and broken trend cases respectively, and
� is a sub-interval of [0; 1] with &0 ∈�. The estimator &̂ is T -consistent under H0 and
is then used as if it were &0: asymptotically valid critical values may thus be obtained
from Table 1.
Table 5 provides empirical rejection frequencies for the KM (�0), NM(�0; 1);S1(�0)

and NM tests for data generated according to 8 (2.1)–(2.2) for T=100 with dt=�0+
(ht(&0), 2 = 1, with &0 = �0. The statistics were computed using the residuals from
a regression of yt on xt = (1; ht(&))′, with & either the true value, &0, or the estimate
from (6.4) with �=[0:2; 0:8]. We investigate the impact of varying the breakpoint and
shift magnitude among &0 = 0:3; 0:5; 0:7 and (= 0; 1; 2; 4.

Where &0 is known all of the tests are exact invariant to ( and the results for KM (�0)
and NM(�0; 1) coincide with those in Table 2. All tests have empirical size close to
the nominal asymptotic 5% level, with power highest for the exact LBI test although,
as expected, its advantage over the sub-sample NM test is much reduced relative to the
corresponding results in Table 2. As in Table 2, power is generally higher the lower
is &0.
When the breakpoint is estimated, the results depend on (. Table 5 shows that the

tests do not seem to suDer from large size distortions, with the exception of the full
sample NM test 9 for (=0 and (=4 and the ratio test for (=4. In general, the larger
is ( the easier it is to identify the breakpoint. Correspondingly, the power loss due to
the estimation of &0 is low for (¿ 2. The ratio test is the most sensitive to breakpoint
estimation: e.g., when ( = 4, � = 0:25, &0 = 0:5 its empirical power is only around
43%, as against 57% for the known breakpoint case. Interestingly, for the ratio test it
no longer always holds that power is higher the lower is &0. Indeed for � = 0:5 and
(6 1 the reverse is true.

Finally, in unreported simulations (available upon request) we also considered testing
without allowing for a break. It is well known that an unaccounted break induces spu-
rious rejection, even asymptotically, for the stationarity tests; see e.g. Nyblom (1989).
The same type of behaviour is expected for our tests. In fact, for T = 100, most tests

8 We replicated these experiments for the corresponding I(1)-I(0) change DGP. The results were qualita-
tively similar and available on request.

9 Critical values for NM of (2.16) depend on the estimated breakpoint, and were obtained by linear
interpolation of those reported in Table I(a) of BH.



Table 5
Empirical rejection frequencies for the case I(0)-I(1) in the presence of a deterministic break, T = 100

� = 0 � = 0:01 � = 0:025 � = 0:05 � = 0:1 � = 0:25 � = 0:5

�0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7 �0 = 0:3 �0 = 0:5 �0 = 0:7

Breakpoint known
KM (�0) 5.14 5.03 5.35 5.57 5.16 5.35 7.43 6.30 5.82 14.20 9.80 7.12 32.88 22.30 11.94 70.38 57.07 35.90 90.49 83.11 65.24

NM(�0 ; 1) 5.08 5.29 5.22 5.77 5.44 5.38 8.46 7.15 5.81 18.68 12.62 7.70 43.21 29.64 15.59 77.65 65.07 43.26 91.77 84.43 67.80
S1(�0) 5.27 5.38 5.25 5.81 5.59 5.47 8.70 7.33 6.22 19.41 13.03 8.21 44.03 30.70 16.64 79.22 68.39 47.18 93.53 88.53 75.60
NM(�0) 4.96 4.72 5.07 5.58 4.94 5.05 8.26 6.12 5.11 18.68 10.52 5.24 43.26 25.30 5.84 78.68 61.73 13.26 93.12 83.42 34.47

Breakpoint estimated
( = 0 KM (�0) 5.97 5.97 5.97 6.17 5.90 5.92 6.28 5.80 6.07 6.76 6.12 6.12 8.83 8.22 7.96 18.73 19.03 19.59 26.14 31.35 39.28

NM(�0 ; 1) 3.75 3.75 3.75 3.68 3.75 3.79 3.81 3.93 3.75 5.02 4.38 4.40 10.96 7.85 6.65 40.14 31.07 22.65 67.24 57.88 46.60
S1(�0) 3.74 3.74 3.74 3.86 3.68 3.75 3.82 4.04 3.83 5.05 4.49 4.39 11.29 8.40 6.93 40.85 33.13 25.35 68.24 62.82 54.36

NM 1.93 1.93 1.93 1.82 1.94 1.87 2.22 1.97 1.92 3.05 2.45 2.29 10.30 4.73 2.97 47.83 24.70 5.97 78.78 55.61 14.59
( = 1 KM (�0) 4.41 4.66 4.79 4.63 4.74 4.85 6.00 5.70 5.20 10.35 8.37 5.95 16.45 14.06 9.27 20.05 23.25 21.21 25.08 32.64 38.73

NM(�0 ; 1) 3.86 4.25 4.34 4.44 4.62 4.49 6.48 5.65 4.74 13.53 8.99 5.86 24.61 19.11 10.73 45.74 38.90 27.29 68.89 60.79 49.04
S1(�0) 3.96 4.27 4.03 4.46 4.40 4.18 6.63 5.58 4.68 13.40 8.97 6.07 24.51 19.28 10.92 45.60 40.05 30.36 68.70 64.96 56.21

NM 3.56 3.17 3.39 4.06 3.36 3.37 6.32 4.14 3.47 13.87 6.54 3.59 31.20 16.77 4.25 58.70 40.16 9.41 81.47 61.72 19.65
( = 2 KM (�0) 3.40 4.03 3.97 3.44 4.08 4.09 4.90 4.85 4.51 9.81 7.73 5.75 24.82 17.95 9.59 34.75 37.60 27.19 28.02 37.45 41.77

NM(�0 ; 1) 4.93 5.13 5.19 5.61 5.44 5.31 8.33 6.98 5.70 17.76 11.84 7.21 40.80 27.67 14.09 60.67 54.75 36.77 73.12 66.65 55.31
S1(�0) 4.83 4.66 4.61 5.33 4.97 4.76 8.12 6.24 5.30 17.45 11.29 7.19 40.64 27.12 13.83 59.93 55.74 39.48 71.18 69.26 62.45

NM 4.38 5.05 5.75 4.82 5.22 5.67 7.52 6.09 5.69 16.53 9.66 5.90 40.32 22.96 6.37 72.59 55.93 12.02 86.34 72.21 28.15
( = 4 KM (�0) 0.78 1.69 2.48 0.79 1.82 2.55 1.37 2.35 2.79 4.03 4.31 3.59 15.54 12.54 6.97 49.82 43.13 25.57 49.93 58.59 50.93

NM(�0 ; 1) 5.01 5.12 5.41 5.54 5.54 5.46 8.45 7.19 5.93 18.27 12.46 7.70 42.33 29.20 15.23 76.11 63.85 41.43 83.88 79.39 64.82
S1(�0) 3.44 3.24 3.58 3.73 3.61 3.72 6.31 4.80 4.24 14.86 9.72 5.77 38.88 25.95 12.64 74.59 63.38 41.15 80.85 80.56 69.61

NM 3.73 7.65 8.85 3.95 7.76 8.84 6.55 8.66 8.94 14.90 12.37 9.05 39.16 25.46 9.47 75.86 59.72 14.60 91.24 81.26 33.01
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have an empirical size of between 90% and 100% for a shift as small as twice the
standard deviation of the noise. The exact distortions depend on the breakpoint, break
magnitude and direction of change, as might be expected, and increased in magnitude
as the sample size is increased.

6.3. Serial correlation

KPSS generalise (2.1)–(2.2) for �0 = 1, to the case where the observation error
process {�t} satis:es the familiar )-mixing conditions of Phillips and Perron (1988,
p. 336), with long run variance 2

L=limT→∞ T−1E(
∑T

t=1 �t)2. In such cases, KPSS sug-
gest replacing the OLS variance estimator ̂2 in NM of (2.16) by the non-parametric
estimator

̂2
L = T−1

T∑
t=1

�̂2t + 2T−1
m∑
i=1

w(i; m)
T∑

t=i+1

�̂t �̂t−i ; (6.5)

where w(i; m) = 1 − i=(m + 1), i = 1; : : : ; m, m the lag-truncation parameter. The rate
conditions m → ∞ and m= o(T 1=2) as T → ∞ are suWcient to ensure that ̂2

L →p 2
L

under both H0 of (2.3) and the local alternative Hc that the long run variance of �t is
2
Lc

2=T 2; see Stock (1994, p. 2797–99).
If we generalise (2.1)–(2.2) and (2.1)–(3.1) to allow weak dependence in �t , no cor-

rection is needed for the ratio-based tests of Sections 2.1 and 3.1, while the LBI-based
statistics of Sections 2.2 and 3.2 need to be modi:ed in the manner suggested by KPSS.
That is, by replacing ̂2 in the right members of (2.16), (2.15) and (3.7) by ̂2

L of
(6.5). For the sub-sample NM-type statistics of Sections 2.2 and 3.2, we must replace
the two sub-sample OLS variance estimators with the corresponding non-parametric
long-run variance estimators. That is, we replace ̂2

1; t and ̂2
0; t in (2.19) and (3.10),

and the functions Hj(·), j = 1; : : : ; 3, thereof, by, respectively,

̂2
1 = (T − [�T ])−1

T∑
t=[�T ]+1

�̂21; t + 2(T − [�T ])−1

×
m∑
i=1

w(i; m)
T∑

t=i+[�T ]+1

�̂1; t �̂1; t−i ; (6.6)

and

̂2
0 = ([�T ])−1

[�T ]∑
t=1

�̂20; t + 2([�T ])−1
m∑
i=1

w(i; m)
[�T ]∑
t=i+1

�̂0; t �̂0; t−i : (6.7)

The resulting non-parametrically modi:ed statistics maintain the limiting null distri-
butions given in Theorems 2.3, 2.5, 3.3 and 3.5 in the presence of weakly dependent
errors. The consistency results stated in Sections 2 and 3 under :xed alternatives hold
except that for those tests using long run variance estimators the rates are now Op(T=m);
cf KPSS.
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We repeated the simulation experiments of Section 5 for cases where the errors
display serial correlation. The results broadly con:rm the :ndings reported in Section
5 and are therefore not presented in detail. As an example, we report in Table 6 the
empirical rejection frequencies of the tests of Section 2.2 using the non-parametric
correction for serial correlation outlined above with m = 0; 4; 8. We also report the
corresponding quantities for the ratio-based tests of Section 2.1. The simulations are
based on the DGP (2.1)–(2.2) for T =100 and with �0 = 0:5 but with the white noise
process �t in (2.1) replaced by an AR(1) process with autoregressive coeWcient ,=0:5.
Note :rst that the ratio-based tests, which do not require estimation of the long run

variance, appear to be quite badly oversized, although unreported results demonstrate
that empirical size does tend towards the nominal level as T is increased. For a given
sample size, there is clearly nothing that the practitioner can do about the size properties
of these tests. For the remaining tests, the usual trade-oD between size and power in m
seen in residual-based tests (see, inter alia, KPSS pp. 169–173) is apparent, with the
exception of the H1(NM(·; 1) test which appears highly unreliable. Other simulation
results, available on request, demonstrate that the closer is , to one the worse are the
size distortions in the ratio tests and, for the remaining tests, the larger must m be to
obtain tests with actual size close to the nominal level. As concerns power, the same
ranking of the tests as noted in Section 5, i.e., LBI-based, NM-based, and ratio-based,
in that order, seems to emerge from the results in Table 6, once m is chosen in each
case to make the tests size-comparable.

7. Application: US in+ation rate

We apply the tests discussed in this paper to the quarterly series of US in;ation
rate for the period 1960Q2–2000Q4. The series is calculated as :rst diDerence of
the logarithm of the (seasonally adjusted) consumer price index, the latter obtained
from the OECD Main Economic Indicators. Ratio-based tests apart, the statistics were
computed using the non-parametric variance estimators, as outlined in Section 6.3, for
m= 0; 1; : : : ; 12.
Consider :rst Table 7 which reports the tests of Sections 2 and 3 for the :xed level

case, xt=1. The standard NM statistic, NM and the maxHj(S), j=1; : : : ; 3, statistics
of (4.16) all reject H0 at the 10% signi:cance level when m6 6, at the 5% level when
m6 4, and at the 1% level when m6 2. The null hypothesis that the US in;ation rate
follows a stationary process is clearly rejected. Notice that maxHj(K)=Hj((KM (·)−1),
j = 1; : : : ; 3, and that in each case H0 is rejected at the 1% level; cf Table 1.

Given the rejection of H0, we now investigate in which direction (and at what date)
the order of integration changes, and indeed if there does appear to have been a change
or whether the series is a constant I(1) process. To that end, notice :rst that, although
both the statistics designed for detecting I(0)-I(1) and those for I(1)-I(0) point towards
a rejection of H0, the outcome looks :rmer in the latter case: for example, H1(S0(:))
rejects at 10% when m6 9, while H1(S1(:)) only rejects at this signi:cance level
when m6 3. Recall that, with the exception of the ratio-based statistics, each statistic
also yields consistent tests against persistence changes in the opposite direction. It
was also remarked, in Section 5, that this feature of the ratio-based statistics might



Table 6
Empirical rejection frequencies for the tests I(0)-I(1) modi:ed for serial correlation: case of AR(1) disturbance with parameter 0.5, T = 100, �0 = 0:5

� = 0 � = 0:01 � = 0:025 � = 0:05 � = 0:1 � = 0:25 � = 0:5

m = 0 m = 4 m = 8 m = 0 m = 4 m = 8 m = 0 m = 4 m = 8 m = 0 m = 4 m = 8 m = 0 m = 4 m = 8 m = 0 m = 4 m = 8 m = 0 m = 4 m = 8

KM (�0) 7.56 7.56 7.56 7.46 7.46 7.46 7.96 7.96 7.96 9.16 9.16 9.16 13.26 13.26 13.26 34.42 34.42 34.42 61.64 61.64 61.64
H1(KM (:)) 9.66 9.66 9.66 9.80 9.80 9.80 10.18 10.18 10.18 11.80 11.80 11.80 18.34 18.34 18.34 45.66 45.66 45.66 75.20 75.20 75.20
H2(KM (:)) 10.04 10.04 10.04 10.10 10.10 10.10 10.64 10.64 10.64 12.88 12.88 12.88 19.96 19.96 19.96 49.22 49.22 49.22 77.46 77.46 77.46
H3(KM (:)) 11.32 11.32 11.32 11.64 11.64 11.64 11.92 11.92 11.92 13.80 13.80 13.80 20.98 20.98 20.98 49.12 49.12 49.12 78.00 78.00 78.00
NM 35.68 8.54 5.18 35.72 8.72 5.50 37.10 9.80 6.46 42.70 13.82 9.22 56.30 25.26 18.26 78.90 55.02 45.02 90.78 71.28 61.96
NM(�0; 1) 34.12 8.12 3.04 34.62 8.02 3.08 35.16 8.54 3.32 37.96 10.08 4.10 46.22 15.54 7.48 70.20 36.00 20.38 85.54 52.74 33.12
H1(NM(:; 1)) 44.98 0.44 2.46 45.52 0.44 2.54 46.58 0.54 2.38 50.98 1.02 2.50 61.52 4.18 2.72 83.78 23.64 1.76 94.26 42.30 1.10
H2(NM(:; 1)) 49.48 7.24 3.84 49.50 7.36 3.82 50.88 7.70 4.20 55.06 10.06 5.78 66.16 18.32 10.92 86.32 47.24 31.48 95.64 68.12 46.72
H3(NM(:; 1)) 50.06 7.10 3.84 50.10 7.28 4.00 51.54 7.62 4.22 55.84 10.06 5.70 66.62 18.36 11.00 86.48 47.58 31.30 95.74 68.12 46.24
S1(�0) 30.68 9.44 6.16 30.76 9.86 6.38 32.60 11.02 7.86 39.08 15.10 11.30 53.28 29.06 23.12 78.92 58.34 51.80 91.78 74.16 67.72
H1(S1(:)) 35.72 9.42 6.16 35.90 9.80 6.52 38.48 10.94 7.14 43.42 14.88 10.12 57.22 27.30 19.26 82.30 57.98 47.84 93.40 76.06 66.02
H2(S1(:)) 32.40 9.12 5.94 32.52 9.62 6.34 34.88 10.96 7.80 40.44 14.76 11.16 54.52 28.60 22.44 80.40 57.94 50.44 92.36 73.98 66.48
H3(S1(:)) 33.10 9.30 6.06 33.26 9.70 6.60 35.54 11.10 7.80 40.92 15.12 11.18 55.36 28.98 22.68 80.98 58.34 50.64 92.66 74.68 67.06
maxH1 (S) 41.26 8.02 4.08 41.60 8.16 4.06 43.80 9.06 4.50 48.26 12.10 5.92 60.56 22.28 12.06 82.30 52.40 36.60 92.90 71.58 56.00
maxH2 (S) 36.98 8.36 4.60 37.18 8.68 4.72 39.30 9.68 5.26 44.56 13.06 7.76 57.36 25.16 17.02 79.98 55.02 44.10 91.94 72.04 61.38
maxH3 (S) 37.68 8.48 4.52 38.02 8.52 4.60 39.86 9.70 4.96 45.26 13.00 7.32 57.68 25.02 16.50 80.38 54.84 43.66 92.16 72.32 61.36
maxH1 (K) 10.92 10.92 10.92 10.94 10.94 10.94 11.24 11.24 11.24 13.30 13.30 13.30 18.80 18.80 18.80 43.50 43.50 43.50 72.86 72.86 72.86
maxH2 (K) 11.22 11.22 11.22 10.88 10.88 10.88 11.16 11.16 11.16 12.62 12.62 12.62 18.46 18.46 18.46 44.00 44.00 44.00 73.82 73.82 73.82
maxH3 (K) 12.90 12.90 12.90 12.86 12.86 12.86 13.00 13.00 13.00 15.00 15.00 15.00 21.22 21.22 21.22 46.28 46.28 46.28 75.24 75.24 75.24
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be usefully exploited to help identify the direction of the change, and, indeed, if there
is a change in persistence. For the US in;ation rate series, the ratio-based statistics
provide a massive rejection of H0 in the direction I(1)-I(0) and no rejection, or at best
a borderline rejection, in the direction I(0)-I(1). Given the characteristic of these tests
to be over-sized in :nite samples in the presence of serially correlated innovations (cf.
Table 6), the foregoing outcomes are all consonant with a change in persistence from
I(1)-I(0) in the US in;ation rate series.
The change-point estimators of Sections 2 and 3 are then computed for our data.

Optimizing over the set T= [0:2; 0:8], as above, we obtained argmax�∈T �M (�)= 0:2,
which corresponds to 1968Q2, and argmin�∈T �M (�) = 0:76; i.e., 1990Q4. The corner
maximum at 0:2 becomes 0:15 if we stretch the feasible set to [0:1; 0:9], while the
minimum again suggests a change from I(1) to I(0), with the estimated breakpoint
unchanged: �̂M = 0:76. It is interesting to observe that this is located at the time of
the US recession of 1990–1991: the growth rate of US real GDP was negative for
three consecutive quarters, from 1990Q3 to 1991Q1, with a quarterly in;ation rate not
signi:cantly declining before 1991Q1. That the argmax estimator points towards the
beginning of the sample makes it less convincing. It should be clear that for a series
with an I(1)-I(0) switch the statistic �M (�) takes high values for small �, regardless
of the true changepoint �0; that is, it is inconsistent against I(1)-I(0) changepoints.
We next computed, at the estimated breakpoint �̂M = 0:76, the statistics for a known
breakpoint. In particular, as expected, KM (�̂M ) and NM(�̂M ; 1) do not reject the null
hypothesis, whereas 1=KM (�̂M ), NM(0; �̂M ) and S0(�̂M ) all provide clear rejections.
The divergence in the inference between the KM (�̂M ) and 1=KM (�̂M ) statistics again
suggests a change in persistence, rather than a constant I(1) process.
The results reported in Table 7 assume that there are no breaks in level in the

in;ation series. We now apply the tests of Section 6.2 to test for the possibility of
a simultaneous change in level and persistence. Because the breakpoint is unknown
we use the two-stage procedure outlined in Section 6.2, :rst estimating the breakpoint
according to (6.4). This yields &̂ = 0:55, corresponding to a break in level in 1982.
The two-stage statistics of Section 6.2 computed at this estimated date are reported in
Table 8. The level-break NM test rejects H0 at the 1% level for all m. Of the tests
designed for detecting I(1) to I(0) changes the (KM (&̂))−1 and S0(&̂) statistics both
reject H0 at the 1% level, the latter for all m, while NM(0; &̂) rejects at the 1% level
for all m6 9 and at the 5% level for m6 12. In contrast, the tests designed to detect
I(0) to I(1) changes provide much less evidence against the null. Only NM(&̂; 1)
can reject H0 at the 10% level, and then only for m6 4. Overall, these results are
consonant with a simultaneous level break and change in persistence from I(1) to I(0)
at �= 0:55.
As a :nal note, the tests developed in this paper to be consistent against changes

from I(1) to I(0) are also consistent against changes from I(2) to I(0); for example,
the ratio-based tests of Section 2.1 which are of Op(Tk), k ∈ {0; 2}, against the former
will be of Op(T 2k) against the latter. A referee has suggested that the US in;ation
rate undergoes a change from I(2) to I(0) in the early to mid 1980s. Allowing for a
simultaneous level change, the above results appear supportive of that view.
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Table 7
Results of the tests for the US in;ation rate

US m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 m = 11 m = 12 10% 5% 1%

NM 2.094 1.129 0.788 0.607 0.499 0.427 0.376 0.338 0.310 0.287 0.269 0.254 0.241 0.347 0.461 0.743
maxH1 (S) 9.207 4.963 3.465 2.669 2.192 1.878 1.653 1.486 1.361 1.262 1.181 1.114 1.059 1.561 1.974 2.939
maxH2 (S) 5.183 2.794 1.951 1.503 1.234 1.057 0.930 0.837 0.766 0.710 0.665 0.627 0.596 0.913 1.214 1.787
maxH3 (S) 3.200 1.573 1.059 0.800 0.650 0.552 0.484 0.433 0.395 0.366 0.342 0.322 0.305 0.473 0.631 0.940
KM (0:76) 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 4.107 6.057 12.095
H1(KM (:)) 16.841 16.841 16.841 16.841 16.841 16.841 16.841 16.841 16.841 16.841 16.841 16.841 16.841 13.630 18.163 29.890
H2(KM (:)) 1.814 1.814 1.814 1.814 1.814 1.814 1.814 1.814 1.814 1.814 1.814 1.814 1.814 3.486 4.611 7.507
H3(KM (:)) 4.090 4.090 4.090 4.090 4.090 4.090 4.090 4.090 4.090 4.090 4.090 4.090 4.090 3.328 5.128 10.526
NM(0:76; 1) 0.340 0.246 0.198 0.161 0.143 0.136 0.132 0.132 0.137 0.144 0.154 0.168 0.185 0.347 0.461 0.743
H1(NM(:; 1)) 5.651 3.064 2.150 1.657 1.361 1.167 1.027 0.923 0.845 0.784 0.733 0.692 0.658 0.783 0.933 1.265
H2(NM(:; 1)) 2.812 1.609 1.169 0.919 0.771 0.674 0.602 0.548 0.508 0.477 0.453 0.434 0.419 0.301 0.375 0.541
H3(NM(:; 1)) 1.753 0.899 0.627 0.484 0.401 0.348 0.309 0.280 0.259 0.243 0.230 0.220 0.212 0.154 0.191 0.279
S1(0:76) 4.735 2.553 1.782 1.373 1.128 0.966 0.850 0.764 0.700 0.649 0.607 0.573 0.545 1.026 1.410 2.347
H1(S1(:)) 4.913 2.648 1.849 1.424 1.170 1.002 0.882 0.793 0.726 0.673 0.630 0.595 0.565 1.224 1.586 2.529
H2(S1(:)) 3.943 2.126 1.484 1.143 0.939 0.804 0.708 0.637 0.583 0.540 0.506 0.477 0.453 0.729 0.987 1.590
H3(S1(:)) 2.057 1.089 0.755 0.579 0.475 0.406 0.357 0.321 0.293 0.272 0.254 0.240 0.228 0.374 0.505 0.822
1=KM (0:76) 151.91 151.91 151.91 151.91 151.91 151.91 151.91 151.91 151.91 151.91 151.91 151.91 151.91 4.107 6.057 12.095
H1(1=KM (:)) 151.91 151.91 151.91 151.91 151.91 151.91 151.91 151.91 151.91 151.91 151.91 151.91 151.91 13.630 18.163 29.890
H2(1=KM (:)) 20.049 20.049 20.049 20.049 20.049 20.049 20.049 20.049 20.049 20.049 20.049 20.049 20.049 3.486 4.611 7.507
H3(1=KM (:)) 72.18 72.18 72.18 72.18 72.18 72.18 72.18 72.18 72.18 72.18 72.18 72.18 72.18 3.328 5.128 10.526
NM(0; 0:76) 2.616 1.417 0.993 0.766 0.630 0.541 0.477 0.430 0.395 0.368 0.346 0.327 0.312 0.347 0.461 0.743
H1(NM(0; :)) 6.174 3.254 2.241 1.718 1.407 1.202 1.057 0.952 0.871 0.809 0.758 0.715 0.680 0.783 0.933 1.265
H2(NM(0; :)) 3.842 2.068 1.441 1.114 0.919 0.791 0.700 0.633 0.583 0.543 0.511 0.484 0.462 0.301 0.375 0.541
H3(NM(0; :)) 2.087 1.075 0.739 0.568 0.467 0.401 0.354 0.320 0.294 0.274 0.258 0.244 0.233 0.154 0.191 0.279
S0(0:76) 3.151 1.698 1.186 0.913 0.750 0.643 0.566 0.509 0.466 0.432 0.404 0.381 0.362 0.502 0.670 1.056
H1(S0(:)) 9.207 4.963 3.465 2.669 2.192 1.878 1.653 1.486 1.361 1.262 1.181 1.114 1.059 1.224 1.586 2.529
H2(S0(:)) 5.183 2.794 1.951 1.503 1.234 1.057 0.930 0.837 0.766 0.710 0.665 0.627 0.596 0.729 0.987 1.590
H3(S0(:)) 3.200 1.573 1.059 0.800 0.650 0.552 0.484 0.433 0.395 0.366 0.342 0.322 0.305 0.374 0.505 0.822
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Table 8
Results of the tests for the US in;ation rate with estimated level shift at 1982

US m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 m = 11 m = 12 10% 5% 1%

NM 2.895 1.581 1.113 0.861 0.710 0.610 0.539 0.486 0.447 0.416 0.390 0.369 0.352 0.157 0.197 0.289
KM (0:55) 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 4.107 6.057 12.095
NM(0:55; 1) 0.870 0.592 0.480 0.403 0.362 0.334 0.309 0.287 0.272 0.261 0.252 0.247 0.242 0.347 0.461 0.743
S1(0:55) 0.262 0.143 0.101 0.078 0.064 0.055 0.049 0.044 0.040 0.038 0.035 0.033 0.032 0.347 0.461 0.743
1=KM (0:55) 43.540 43.540 43.540 43.540 43.540 43.540 43.540 43.540 43.540 43.540 43.540 43.540 43.540 4.107 6.057 12.095
NM(0; 0:55) 5.947 3.138 2.168 1.663 1.362 1.164 1.023 0.920 0.843 0.782 0.732 0.691 0.656 0.347 0.461 0.743
S0(0:55) 9.324 5.092 3.586 2.774 2.286 1.965 1.736 1.566 1.439 1.339 1.257 1.189 1.132 0.347 0.461 0.743
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8. Conclusions

We have considered the problem of testing the null hypothesis that a series is stochas-
tically stationary, around a (possibly broken) deterministic trend function, against the
alternative that the series displays a change in persistence, either from I(0) to I(1) or
from I(1) to I(0).
BT and Kim et al. (2002) develop ratio-based tests against I(0) to I(1) changes. We

have shown these to be inconsistent against constant I(1) processes and against I(1) to
I(0) changes, and have developed consistent ratio-based tests and breakpoint estimators
against I(1) to I(0) changes, and ratio-based tests which are consistent against either
direction of change. Under Gaussianity and for a known direction of change at a
known point, we have also derived LBI tests against changes in persistence. Where
the change-point is unknown we proposed taking functions of the LBI statistics over
all possible break-dates. Sub-sample implementations of the stationarity tests of KPSS
and NM were also considered.
Numerical results suggested that, for a given direction of change, the LBI-based tests

are considerably more powerful than either the ratio-based or sub-sample stationarity
tests. Signi:cant power did not appear to be gained from knowledge of the breakpoint.
With the exception of the ratio-based tests, all the tests considered were shown to
have good power against both changes from I(0) to I(1), and vice versa, and against
constant I(1) alternatives. Moreover, a test based on the pairwise maximum of the
LBI-based statistics for the two possible directions of change generally outperformed
standard stationarity tests.
A feature of the ratio-based tests is that in the presence of serially correlated in-

novations they do not require the arguably arbitrary decisions over the lag truncation
parameter that must be taken in the context of the other statistics discussed in this
paper. However, the simulation results presented in this paper have suggested that the
:nite sample size properties of the ratio-based tests are not satisfactory in practical
situations.
Finally, we applied the tests to the US in;ation rate. When no level break was

allowed, the outcomes were consistent with a change in persistence from I(1)-I(0)
around the time of the 1990/1991 US recession. Where a simultaneous level change
was allowed the results were consistent with a change in persistence from I(1)-I(0) in
the early to mid 1980s. Overall, the evidence presented in this paper suggests that the
ratio-based and LBI-based tests are useful complements and that their use in tandem
forms a useful synergy for the applied researcher.
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Appendix A. Proof of theorems

Since all of the tests discussed in this paper are exact invariant to �0 we set �0 = 0
throughout this Appendix purely to simplify notation.

Proof of Theorem 2.1. De:ne the (independent) partial sum processes S�
[Tr]=

∑[Tr]
k=1 �k ,

r ∈ [0; 1), where [Tr] denotes the integer part of Tr, with the convention S�
T=
∑T

k=1 �k ,
and S

�∗
[Tr] =

∑[Tr]
k=1 �∗

k , r ∈ [0; 1), again with the convention that S�∗
T =

∑T
k=1 �∗

k , and
where �∗

t ≡ −1
� �t . Under the conditions stated on (�t ; �t) in Section 2, cf. Chan and

Wei (1988, Theorem 2.2, p. 372), S�
[Tr] and S

�∗
[Tr] satisfy a multivariate invariance

principle such that

T−1=2(S�
[Tr];S

�∗
[Tr]) ⇒ (W0(r);Wc(r)); r ∈ [0; 1]; (A.1)

jointly, where W0(r) and Wc(r) are independent standard Brownian motions.
Consider the process yt generated according to (2.1)–(2.2). This may be written as,

yt = �t +
t∑

j=1

1(j¿ [�0T ])�j; t = 1; : : : ; T: (A.2)

Consequently, from (A.2), (A.1) and an application of the CMT, under Hc of (2.5),

T−1=2
[Tr]∑
t=1

yt = T−1=2
[Tr]∑
t=1

�t + T−1=2
[Tr]∑
t=1


 t∑

j=1

1(j¿ [�0T ])�j




⇒ 
(
W 0(r) + c

∫ r

�0
[W c(s) −W c(�0)] ds

)
≡ V1(r); (A.3)

r ∈ [0; 1], where the integral is understood to exist only where r ¿�0.
Consider :rst the case where � is :xed. Then from (A.2), the OLS residuals from

a regression of yt on an intercept, t = 1; : : : ; [�T ], satisfy �̂0; t = yt − [�T ]−1 ∑[�T ]
s=1 ys,

hence

�̂0; t = �t − [�T ]−1
[�T ]∑
s=1

�s +
t∑

j=1

1(j¿ [�0T ])�j

−[�T ]−1
[�T ]∑
s=1


 s∑

j=1

1(j¿ [�0T ])�j


 (A.4)

and therefore from (A.3), (A.4) and an application of the CMT

T−1=2
[Tr]∑
t=1

�̂0; t ⇒ (V1(r) − r�−1V1(�)); r ∈ [0; �]: (A.5)



F. Busetti, A.M.R. Taylor / Journal of Econometrics 123 (2004) 33–66 63

Similarly, from (A.2), the OLS residuals from a regression of yt on an intercept,
t = [�T ] + 1; : : : ; T , satisfy �̂1; t = yt − (T − [�T ])−1 ∑T

s=[�T ]+1 ys, hence

�̂1; t = �t − (T − [�T ])−1
T∑

s=[�T ]+1

�s +
t∑

j=[�T ]

1(j¿ [�0T ])�j

−(T − [�T ])−1
T∑

s=[�T ]+1


 s∑

j=[�T ]+1

1(j¿ [�0T ])�j


 : (A.6)

Observe that T−1=2 ∑[Tr]
t=[�T ]+1 �̂t ≡ T−1=2(

∑[Tr]
t=1 �̂t −∑[�T ]

t=1 �̂t). Therefore from (A.3),
(A.6) and an application of the CMT,

T−1=2
[Tr]∑

t=[�T ]+1

�̂1; t ⇒ {V1(r) −V1(�)

−(r − �)(1 − �)−1(V1(1) −V1(�))}; (A.7)

r ∈ (�; 1]. It then follows directly from applications of the CMT that KM (�) of (2.6)
weakly converges to �(�). This result holds formally only for :xed �. The joint con-
vergence result (2.10) stated for the sequence of statistics {KM (�); 0¡�¡ 1}, then
follows immediately from the :xed representation using arguments proved in Zivot
and Andrews (1992). The result in (2.11) then follows directly from the main re-
sult using applications of the CMT, noting that the Hj(·), j = 1; : : : ; 3, are continuous
functions.

Proof of Theorem 2.2. Under the DGP (2.12)–(2.13) it is clearly seen that the :rst
sub-sample OLS residuals �̂0; t , t = 1; : : : ; [�T ], are of Op(1) provided �6 �0, since
�̂0; t = yt − [�T ]−1 ∑[�T ]

s=1 ys. However, the second sub-sample OLS residuals, �̂1; t , are
seen to be of Op(T 1=2), t = [�T ] + 1; : : : ; T . Therefore, for �6 �0, K(�) of (2.6) is
of Op(T 2), while for �¿�0, K(�) is of Op(1). Consequently, the Hj are of Op(T 2),
provided the intersection of the intervals [0; �0] and T is non-empty.

Proof of Theorem 2.3. From (A.2), the OLS residuals from a regression of yt on an
intercept, t = 1; : : : ; T , satisfy �̂t = yt − T−1 ∑T

s=1 ys, and hence

�̂t = �t − T−1
T∑
s=1

�s +
t∑

j=1

1(j¿ [�0T ])�j − T−1
T∑
s=1


 s∑

j=1

1(j¿ [�0T ])�j


 :

(A.8)

Therefore from (A.3), (A.8) and an application of the CMT

T−1=2
[Tr]∑
t=1

�̂t ⇒ (V1(r) − rV1(1)); r ∈ [0; 1]: (A.9)

The weak convergence of S1(�) to !1(�) for :xed � follows directly from (A.9), the
CMT and the consistency of ̂2 for 2 under Hc of (2.5); see Elliott and Stock (1994,
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Theorem 2). The joint convergence result (2.17) stated for the sequence of statistics
{S1(�); 0¡�¡ 1}, again follows from Zivot and Andrews (1992). The results in
(2.18) then follow using the CMT.

Proof of Theorem 2.4. Under the DGP (2.12)–(2.13), for t = 1; : : : ; [�0T ]; yt is of
Op(1), while for t = [�0T ] + 1; : : : ; T , yt is of Op(T 1=2). Since �̂t = yt − T−1 ∑T

s=1 ys,
these are of Op(T 1=2) for all t. Consequently,

∑T
t=[�T ]+1(

∑T
j=t �̂j)

2 is of Op(T 4) for
06 �¡ 1. Noting from KPSS that under (2.12)–(2.13) ̂2 is of Op(T ) the stated result
follows immediately.

Proof of Theorem 2.5. The results follow from Theorem 2.1 and the consistency of ̂2
1

for 2 under Hc of (2.5).

Proof of Theorem 2.6. Since, as shown in proof of Theorem 2.2, the �̂1; t are of
Op(T 1=2), t = [�T ] + 1; : : : ; T , the results follow immediately noting that ̂2

1 is of
Op(T ).

Proof of Theorem 3.1. Under (2.1)–(3.1), yt = �t +
∑t

j=1 1(j6 [�0T ])�j, t=1; : : : ; T ,
from which using (A.1) and the CMT it follows that, under Hc of (2.5),

T−1=2
[Tr]∑
t=1

yt = T−1=2
[Tr]∑
t=1

�t + T−1=2
[Tr]∑
t=1


 t∑

j=1

1(j6 [�0T ])�j




⇒ 

(
W 0(r)+c

{∫ min(r;�0)

0
W c(s) ds+1(r¿�0)[(r−�0)W c(�0)]

})

≡ V2(r); r ∈ [0; 1]: (A.10)

The proof of (3.2) and (3.3) then follow along exactly the same lines as the proof of
Theorem 2.1, replacing V1(r) by V2(r) throughout.

Proof of Theorem 3.2. Under (3.4)–(3.5); yt is Op(T 1=2) for t = 1; : : : ; [�0T ]. The :rst
sub-sample residuals, �̂0; t , t = 1; : : : ; [�T ], are thus also of Op(T 1=2). Although yt is
of Op(T 1=2) for t = [�0T ] + 1; : : : ; T , due to z[�0T ];0 in the right member of (3.5),
OLS residuals from regressing yt on a constant for any data within the set of ob-
servations {ys}Ts=[�0T ]+1 will be purged of z[�0T ];0, and hence of Op(1). The second
sub-sample residuals, �̂1; t , are thus of Op(1) provided �¿ �0, and of Op(T 1=2) other-
wise. Consequently, (KM )−1 is of Op(T 2) for all �¿ �0, but Op(1) otherwise. The
Hj(·), j=1; : : : ; 3, are thus of Op(T 2), provided the intersection of the intervals [�0; 1]
and T is non-empty.

Proof of Theorem 3.3. The weak convergence of S0(�) to !0(�) for :xed � follows
directly from (A.10), applications of the CMT and the consistency of ̂2 for 2 under
Hc of (2.5). The joint convergence result (3.8) again follows from Zivot and Andrews
(1992). The results in (3.9) then follow from (3.8) using the CMT.
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Proof of Theorem 3.4. From Theorem 3.2, the OLS residuals �̂t are of Op(T 1=2),
t = 1; : : : ; T under (3.4)–(3.5). The proof therefore follows exactly as for
Theorem 2.4.

Proof of Theorem 3.5. The results follow from Theorem 3.1 and the consistency of ̂2
1

for 2 under Hc.

Proof of Theorem 3.6. The stated results follow immediately from the results given in
Theorem 3.2 and noting that ̂2

0 is of Op(T ).

References

Andrews, D.W.K., 1993. Tests for parameter instability and structural change with unknown change point.
Econometrica 61, 821–856.

Andrews, D.W.K., Ploberger, W., 1994. Optimal tests when a nuisance parameter is present only under the
alternative. Econometrica 62, 1383–1414.

Banerjee, A., Lumsdaine, R., Stock, J., 1992. Recursive and sequential tests of the unit root and trend break
hypotheses: theory and international evidence. Journal of Business and Economics Statistics 10, 271–288.

Bai, J., 1997. Estimation of a change point in multiple regression models. Review of Economics and Statistics
79, 551–563.

Busetti, F., Harvey, A.C., 2001. Testing for the presence of a random walk in series with structural breaks.
Journal of Time Series Analysis 22, 127–150.

Busetti, F., Harvey, A.C., 2003. Further comments on stationarity tests in series with structural breaks at
unknown points. Journal of Time Series Analysis 29, 137–140.

Busetti, F., Taylor, A.M.R., 2001. Tests of stationarity against a change in persistence, University of
Birmingham, Department of Economics, Discussion Paper 01-13.

Chan, N.H., Wei, C.Z., 1988. Limiting distributions of least squares estimates of unstable autoregressive
processes. Annals of Statistics 16, 367–401.

Doornik, J.A., 1998. Object-oriented matrix programming using Ox 2.0. Timberlake Consultants Press,
London.

Elliott, G., Stock, J.H., 1994. Inference in time series regression when the order of integration of a regressor
is unknown. Econometric Theory 10, 672–700.

Hansen, B.E., 1991. Testing for structural change of unknown form in models with nonstationary regressors,
Department of Economics, University of Rochester, Mimeo.

Hansen, B.E., 1997. Approximate asymptotic p-values for structural-change tests. Journal of Business and
Economic Statistics 15, 60–67.

Harvey, A.C., 2001. Testing in unobserved components models. Journal of Forecasting 20, 1–19.
Kim, J.Y., 2000. Detection of change in persistence of a linear times series. Journal of Econometrics 95,

97–116.
Kim, J.Y., Belaire Franch, J., Badilli Amador, R., 2002. Corrigendum to “Detection of change in persistence

of a linear times series”. Journal of Econometrics 109, 389–392.
King, M.L., Hillier, G.H., 1985. Locally best invariant tests of the error covariance matrix of the linear

regression model. Journal of the Royal Statistical Society, (Series B) 47, 98–102.
Kurozumi, E., 2002. Testing for stationarity with a break. Journal of Econometrics 108, 63–99.
Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y., 1992. Testing the null hypothesis of stationarity

against the alternative of a unit root: how sure are we that economic time series have a unit root?. Journal
of Econometrics 54, 159–178.

Leybourne, S.J., Kim, T.-H., Smith, V., Newbold, P., 2000. Tests for a change in persistence against the
null of diDerence-stationarity, Department of Economics, University of Nottingham, UK, Mimeo.

MacNeill, I., 1978. Properties of sequences of partial sums of polynomial regression residuals with
applications to tests for change of regression at unknown times. Annals of Statistics 6, 422–433.



66 F. Busetti, A.M.R. Taylor / Journal of Econometrics 123 (2004) 33–66

Nyblom, J., 1989. Testing for the constancy of parameters over time. Journal of the American Statistical
Association 84, 223–230.

Nyblom, J., MFakelFainen, T., 1983. Comparisons of tests for the presence of random walk coeWcients in a
simple linear model. Journal of the American Statistical Association 78, 856–864.

Phillips, P.C.B., Perron, P., 1988. Testing for a unit root in time series regression. Biometrika 75, 335–346.
Stock, J.H., 1994. Unit roots, structural breaks and trends. In: Engle, R.F., McFadden, D.L. (Eds.), Handbook

of Econometrics, Vol. 4, Elsevier, Amsterdam, pp. 2739–2840.
Zivot, E., Andrews, D.W.K., 1992. Further evidence on the great crash, the oil-price shock, and the unit-root

hypothesis. Journal of Business and Economic Statistics 10, 251–270.


	Tests of stationarity against a change in persistence*-3pt
	Introduction
	Tests against changes from I(0) to I(1)
	Ratio tests
	LBI tests

	Tests against changes from I(1) to I(0)
	Ratio tests
	LBI tests

	Testing when the direction of change is unknown
	Numerical results
	Generalisations
	Extended deterministic specifications
	Dealing with structural breaks in the trend
	Serial correlation

	Application: US inflation rate
	Conclusions
	Acknowledgements
	Appendix A. Proof of theorems
	References


